⑴ 如何通俗并尽可能详细解释卡尔曼滤波
卡尔曼滤波(Kalman filtering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。
斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。
数据滤波是去除噪声还原真实数据的一种数据处理技术, Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态. 由于, 它便于计算机编程实现, 并能够对现场采集的数据进行实时的更新和处理, Kalman滤波是目前应用最为广泛的滤波方法, 在通信, 导航, 制导与控制等多领域得到了较好的应用。
⑵ 请问一下,Labview中有卡尔曼滤波器的工具吗,我想用这个滤波器进行信号处理,求高手指点,在哪里能找到
这个是有的,在“控制与仿真”——Control Design——Implementation下面的第7个就是Klman滤波器,或者你直接在函数面板上搜索"Klman",就可以找到了,不过我没有实际用过,具体怎么用你还要多学习学习了~
⑶ 卡尔曼滤波器有什么作用
卡尔曼滤波器是一种由卡尔曼提出的用于时变线性系统的递归滤波器。这个系统可用于包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。