⑴ 怎么用matlab编写曲线拟合
在命令行输入图中所示的数据;
如何利用MATLAB曲线拟合工具箱做曲线拟合
在窗口中输入cftool,按enter键进入拟合工具箱;
如何利用MATLAB曲线拟合工具箱做曲线拟合
在Xdata中选择x,Ydata中选择y;
如何利用MATLAB曲线拟合工具箱做曲线拟合
修改fitname名称为拟合曲线1;
如何利用MATLAB曲线拟合工具箱做曲线拟合
在右侧的下拉菜单中选择拟合曲线的类型,再选择相应的degree和robust;
如何利用MATLAB曲线拟合工具箱做曲线拟合
单机fit options,设定参数上下限;
如何利用MATLAB曲线拟合工具箱做曲线拟合
设置完成后自动更新,我们可从窗口中看到相应的拟合曲线,在result中看到拟合结果。
如何利用MATLAB曲线拟合工具箱做曲线拟合
⑵ matlab中如何进行曲线拟合
拟合用polyfit和polyval.
b=polyfit(x,y,2);%进行2次拟合,b是多项式前面的值。就如2次拟合中y=ax+b,a,b的值。
yy=polyval(b,x);%得到拟合后y的新值
plot(x,yy)%画拟合图
⑶ 如何使用matlab拟合工具箱
1.打开CFTOOL工具箱。
在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。也可以在命令窗口中直接输入”cftool”,打开工具箱。
2.输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。 例如在命令行里输入下列数据: x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33]; y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278; 0.041803; 0.038026; 0.038128; 0.088196];
3.数据的选取。
打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。关闭Data对话框。此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.曲线拟合(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。在Fit Editor里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中刚才建立的x-y数据组,然后在Type of fit选框中选取拟合或回归类型,各个类型的拟合或回归相应的分别是: Custom Equations 用户自定义函数 Expotential e指数函数 Fourier 傅立叶函数,含有三角函数 Gaussian 正态分布函数,高斯函数 Interpolant 插值函数,含有线性函数,移动平均等类型的拟合 Polynomial 多项式函数 Power 幂函数 Rational 有理函数(不太清楚,没有怎么用过) Smooth Spline (光滑插值或者光滑拟合,不太清楚) Sum of sin functions正弦函数类
在这个Type of fit选框中选择好合适的类型,并选好合适的函数形式。于是点击Apply按钮,就开始进行拟合或者回归了。此时在Curve Fitting Tool窗口上就会出现一个拟合的曲线。这就是所要的结果。 在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply按钮,就可以看见拟合得到的正弦曲线。
⑷ 如何使用matlab 2014a 做数据曲线拟合
方法/步骤
输入数据
做数据曲线拟合,当然该有数据,本经验从以如下数据作为案例。
添加数据到curve fitting程序
这一步就是将你要拟合的数据添加到curve fitting程序中,同时给你拟合的曲线命名。
选择曲线拟合的方法类型
常见的拟合曲线有多项式的、指数的、对数的等等。curve fitting程序提供了很多的方法。你可以根据自己的数据具体选择。
选择好方法后,按照提供的公式选择具体的选项
本文的数据近似为线性的,我们选择多项式拟合的一阶方法。
拟合结果查看
拟合后,curve fitting会给你具体的函数表达式,你可以将他给出的参数的值带入你选择的方法中。
结果说明
在结果中,不仅可以看到函数的表达式,同时他还给出了95%置信区间的参数值,以及拟合好坏的一些指标,如:
SSE:
R-square:
Adjusted R-square:
RMSE:
画出图像
虽然在curve fitting程序有自带的图像显示,但是一般最好将拟合结果显示到单独的图像窗口。
保存结果
曲线拟合结束后,你可以保存你的拟合结果。选择你保存的路径即可。