导航:首页 > 五金知识 > 神经网络工具箱数据预处理

神经网络工具箱数据预处理

发布时间:2023-05-22 00:31:53

1. 在模式识别,人工神经网络方法中,为什么要进行数据预处理

  1. 可以降低数据大小巧旦,通过归约,可以建立好宽肆的样本集,因为脏数据的存在,需要预处理

  2. 单位不一致,比如,身高1.7米,体重120斤,那么1.7和120不在一个数量级上,导致1.7的权重被淹没

  3. 有时候需要降维,降低运算量,有时需要升维,达到线性可分,这些都是预处理的孝巧扰方面

2. Matlab问题 神经网络中将所有向量都量化到[-1,1]的范围内是哪种数据预处理方法

premnmx 是matlab神经网络工具箱里专门将原始数据归一化到[-1,1]之间的命令
这个在网页前侍漏谈并上很容易得到验证
它的具体做法是:
2*(p-pmin)/(pmax-pmin)-1
p是原始数据,pmax,pmin分别是原始数据的最大值和最小值

具体原理我不知道,但我知道这个公式就是matlab神慧烂经网络工具箱里使用的,将原始数据归一化到[-1,1]之间的专有命令

3. 如何利用训练好的神经网络进行预测

可以用MATLAB神经网络工具箱,先提取样本,用mapminmax函数归一化,再newff函数建立网络,设置好训练参数后,使用train

4. 用多线程预处理数据提高神经网络训练速度

python3.6.3、tensorflow1.10.0
Intel@AIDevCloud:Intel Xeon Gold 6128 processors集群

http://download.tensorflow.org/example_images/flower_phtos.tgz

首先需要将图像数据进行处理转化为TFRecord数据,在读取TFRecord数据文件的时候,首先获取训练数据的文件列表,然后维护一个输入文件队列,这样不同线程的文件读取函数就可以共享此文件队列,图像预处理的过程可以并行地跑在多个线程里,并且可以整理为batch提供给神经网络。这里采用了slim定义的LeNet5神经网络进行训练,训练轮数为500轮,这里不关心训练的神经网络正确性如何,只关心训练过程中增加预处理的线程数对于训练速度的提升效果,分别采用单个线程谈轮来进行预处理和3个线程来进行预处理,比较训练时间。

这里分别采用了一个线程和三个线程来进行预处理,并进行了500次训练所用的时间的对比,这两种方式均为一个reader读取数据,运行结果如下所示:

从结果可以看到采用多线程来进行数据的预处理可以有效地减少神经网络训练的瓶颈时间,但对于复杂的神经网络应该效果不大,因为复杂的神经网络的时大改间主要消耗在训练过程而不是含仿信数据预处理过程,但是对于数据量大的问题,采用多线程来进行数据的预处理是一个可行的优化方法。

5. matlab神经网络工具箱预测数据在哪

在matlab。打开matlab,通过导入数据,输入“输入数据”(input),以及“输出数据”(output),可以看到工作区已经出运吵碰现了两个数据。MATLAB是美国MathWorks公司出品的商旁谈业数学软碰悔件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环。

6. 神经网络工具箱NARX网络训练好之后,该怎么预测,具体如下

调用sim函数,格式:y=sim(net,p)
其中:net:已经训练好的网络,p:带预测日的降雨,y:带预测日的水位

7. 在matlab中怎么使用神经网络工具箱啊还有神经网络训练完了以后怎么预测新数据啊

用sim函数就行:y=sim(net,p);net是训练好的网络,p是输入,y就是你要的输出。

8. 如果选用神经网络工具箱进行仿真结果如何如何进行仿真

选用神经网络工具箱进行仿真结果偏差较小,步骤如下:
1、将实际问题抽象成神经网络求解所能接受的数据形示。
2、确定网络模型,选择网络的类型、结构等,选择网络参数,如神经元数,隐含层数等。
3、确定训练模式,选择训练算法,确定训练步数,指定训练目标误差芦轮等。
4、选择合适的训练样本进行网络测运哗姿试。
神经网络工具箱,就是其在模拟人的大脑,把每一旁绝个节点当作一个神经元,这些“神经元”组成的网络就是神经网络。

9. matlab神经网络工具箱怎么效果好

导入数据:选择合适的数据,一定要选数值矩阵形式
在这里插入图片描述在这里插入图片描述

进行训练
在这里插入图片描述

接下来就点next,选择输入输出,Sample are是选择以行还是列放置矩阵的,注意调整

在这里插入图片描述

接下来一直next,在这儿点train

在这里插入图片描述

查看结果

在这里插入图片描述

导出代码:再点next,直到这个界面,先勾选下面的,再点Simple Script生成代码
在这里插入图片描述

使用训练好的神经网络进行预测
使用下方命令,z是需要预测的输入变量,net就是训练好的模型

在这里插入图片描述

再将结果输出成excel就行啦

在这里插入图片描述

打开CSDN,阅读体验更佳

使用MATLAB加载训练好的caffe模型进行识别分类_IT远征军的博客-CSDN...
在进行下面的实验前,需要先对数据进行训练得到caffemodel,然后再进行分类识别 c_demo.m function [scores, maxlabel] = c_demo(im, use_gpu) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('/home/...
继续访问
MATLAB调用训练好的KERAS模型_LzQuarter的博客
下载了链接中的“kerasimporter.mlpkginstall”文件后,在matlab内用左侧的文件管理系统打开会进入一个页面,在该页面的右上角有安装的按钮,如果之前安装一直失败,可以通过这个安装按钮的下拉选项选择仅下载 下载还是有可能要用到VPN,但是相比...
继续访问
最新发布 matlab神经网络预测数据,matlab神经网络工具箱
Matlab语言是MathWorks公司推出的一套高性能计算机编程语言,集数学计算、图形显示、语言设计于一体,其强大的扩展功能为用户提供了广阔的应用空问。它附带有30多个工具箱,神经网络工具箱就是其中之一。谷歌人工智能写作项目:神经网络伪原创。
继续访问
matlab神经网络工具箱系统预测
matlab神经网络工具箱系统预测 有原始数据 根据原始数据预测未来十年内的数据
matlab预测控制工具箱
matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助 matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助
用matlab做bp神经网络预测,神经网络预测matlab代码
我觉得一个很大的原因是你预测给的输入范围(2014-)超出了训练数据的输入范围(2006-2013),神经网络好像是具有内插值特性,不能超出,你可以把输入变量-时间换成其他的变量,比如经过理论分析得出的某些影响因素,然后训练数据要包括大范围的情况,这样可以保证预测其他年份的运量的时候,输入变量不超出范围,最后预测的时候给出这几个影响因素的值,效果会好一点。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。
继续访问

BP神经网络预测实例(matlab代码,神经网络工具箱)
目录辛烷值的预测matlab代码实现工具箱实现 参考学习b站: 数学建模学习交流 bp神经网络预测matlab代码实现过程 辛烷值的预测 【改编】辛烷值是汽油最重要的品质指标,传统的实验室检测方法存在样品用量大,测试周期长和费用高等问题,不适用于生产控制,特别是在线测试。近年发展起来的近红外光谱分析方法(NIR),作为一种快速分析方法,已广泛应用于农业、制药、生物化工、石油产品等领域。其优越性是无损检测、低成本、无污染,能在线分析,更适合于生产和控制的需要。实验采集得到50组汽油样品(辛烷值已通过其他方法测
继续访问

用matlab做bp神经网络预测,matlab人工神经网络预测
ylabel('函数输出','fontsize',12);%画出预测结果误差图figureplot(error,'-*')title('BP网络预测误差','fontsize',12)ylabel('误差','fontsize',12)xlabel('样本','fontsize',12)。三、训练函数与学习函数的区别函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。.
继续访问
matlab训练神经网络模型并导入simulink详细步骤
之前的神经网络相关文章: Matlab-RBF神经网络拟合数据 Matlab RBF神经网络及其实例 4.深度学习(1) --神经网络编程入门 本文介绍一下怎么把训练好的神经网络导入到simulink并使用,假定有两个变量,一个输出变量,随机生成一点数据 x1 = rand(1000,1);x2 = rand(1000,1);x = [x1 x2];y = rand(1000,1); 在App里面找到神经网络工具箱 点击Next 选择对应的数据,注意选择好对应的输入和输出,还
继续访问

用matlab做bp神经网络预测,matlab神经网络怎么预测
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。如果你所选用的激活函数是线性函数,那么就可以先把输出的表达式写出来,即权向量和输入的矩阵乘积。
继续访问

matlab训练模型、导出模型及VC调用模型过程详解
MATLAB是美国MathWorks公司出品的商业数学软件,为算法开发、数据可视化、数据分析以及数值计算等提供了高级计算语言和交互式环境。随着人工智能的崛起,MATLAB也添加了自己的机器学习工具包,只需要很少的代码或命令就能完成模型训练和测试的过程,训练好的模型也能方便的导出,供VC等调用。本文主要介绍模型训练、导出和调用的整个过程。 软件版本: VC2015,matlab2018a ...
继续访问

matlab神经网络预测模型,matlab人工神经网络预测
谷歌人工智能写作项目:小发猫matlab带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子常见的神经网络结构。核心调用语句如下:%数据输入%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP网络训练%%初始化网络结构net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.0
继续访问

在Matlab中调用pytorch上训练好的网络模型
在Matlab中调用pytorch上训练好的网络模型
继续访问

MATLAB_第二篇神经网络学习_BP神经网络
BP神经网络代码实现1. BP神经网络的简介和结构参数1.1 BP神经网络的结构组成1.2 BP神经网络训练界面的参数解读 非常感谢博主wishes61的分享. 1. BP神经网络的简介和结构参数 一种按照误差逆向传播算法训练的多层前馈神经网络用于预测BP神经网络的计算过程:由正向计算过程和反向计算过程组成。 正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每一层神经元的状态只影响下一层神经元的状态。 如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各
继续访问

MATLAB神经网络拟合回归工具箱Neural Net Fitting的使用方法
本文介绍MATLAB软件中神经网络拟合(Neural Net Fitting)工具箱的具体使用方法~
继续访问

灰色预测工具箱matlab,Matlab灰色预测工具箱——走过数模
2009-07-02 23:05灰色预测几乎是每年数模培训必不可少的内容,相对来说也是比较简单,这里写了四个函数,方便在Matlab里面调用,分别是GM(1,1),残差GM(1,1),新陈代谢GM(1,1),Verhust自己写得难免有所疏忽,需要的朋友自己找本书本来试验一下。。Gm(1,1)function [px0,ab,rel]=gm11(x0,number)%[px0,ab,rel]=gm...
继续访问
matlab利用训练好的BP神经网络来预测新数据(先保存网络,再使用网络)
1,保存网络。save ('net') % net为已训练好的网络,这里把他从workspace保存到工作目录,显示为net.mat文档。 2,使用网络。load ('net') % net为上面保存的网络,这里把他下载到workspace。y_predict = sim(...
继续访问
数学建模学习(79):Matlab神经网络工具箱使用,实现多输入多输出预测
Matlab神经网络工具箱实现,实现多输入多输出预测
继续访问

热门推荐 如何利用matlab做BP神经网络分析(包括利用matlab神经网络工具箱)
利用MATLAB 进行BP神经网络的预测(含有神经网络工具箱) 最近一段时间在研究如何利用预测其销量个数,在网上搜索了一下,发现了很多模型来预测,比如利用回归模型、时间序列模型,GM(1,1)模型,可是自己在结合实际的工作内容,发现这几种模型预测的精度不是很高,于是再在网上进行搜索,发现神经网络模型可以来预测,并且有很多是结合时间序列或者SVM(支持向量机)等组合模型来进...
继续访问
bp神经网络预测案例python_详细BP神经网络预测算法及实现过程实例
1.具体应用实例。根据表2,预测序号15的跳高成绩。表2国内男子跳高运动员各项素质指标序号跳高成绩()30行进跑(s)立定三级跳远()助跑摸高()助跑4—6步跳高()负重深蹲杠铃()杠铃半蹲系数100(s)抓举()12.243.29.63.452.151402.811.05022.333.210.33.752.21203.410.97032.243.09.03.52.21403.511.4504...
继续访问
如何调用MATLAB训练神经网络生成的网络进行预测
如何调用MATLAB训练神经网络生成的网络问题引出知识准备代码注解 问题引出 如何存储和调用已经训练好的神经网络。 本人前几天在智能控制学习的过程中也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。通过不断调试,大致弄明白这两个函数对神经网络的存储。下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。 知识准备 如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口 输入:s
继续访问
matlab训练好的模型怎么用
神经网络

10. 神经网络中对输入数据的预处理包括哪些步骤方法最好能说得详细些,谢谢!

我最近用过BP神经网络、径向基神经网络、广义回归、遗传神经网络,怎么不知道输入的数据还要预处理啊。

阅读全文

与神经网络工具箱数据预处理相关的资料

热点内容
给水管顶端要加什么阀门 浏览:810
连续重整装置注氯作用 浏览:496
煤矿主扇电动门自动切换装置 浏览:22
移动阀门通关是什么游戏 浏览:906
宜兴市五金材料市场 浏览:766
42内孔的轴承外直径是多少 浏览:875
微生物实验仪器为什么要灭菌 浏览:265
发电机轴接地装置设计原理图 浏览:43
机械格栅有什么部件 浏览:243
户内燃气管道阀门安装前的要求 浏览:51
倾倒二氧化碳的实验装置 浏览:258
管道井供水阀门 浏览:647
东莞宏搏五金制品有限公司 浏览:167
仪器仪表箱多少钱 浏览:903
机械手臂如何做 浏览:434
徐汇哪里有废旧设备回收 浏览:669
常见的简单机械有什么 浏览:308
怎么样形容买的设备好 浏览:285
饮料灌水设备有哪些 浏览:331
粘胶布检测需要哪些实验室仪器 浏览:689