Ⅰ svm人脸识别训练了svm模型后怎么测试
1、打开svm软件。
2、其次在森携svm软件中导入人脸识别训练此御伏后的svm模型。拆早
3、然后点击svm右上角的保存并且进行调试。
4、最后,调试完成后点击视图中的进行测试按钮即可。
Ⅱ 如何在MATLAB中添加SVM函数工具箱
第一步把SVM工具箱拷贝到你的MATLAB安装路径下的toolbox
例如:D:Program FilesMatlabR2007b oolbox
第二步打开MATLAB,file ,set path, add folder, 添加工具箱中的svm文件夹
Ⅲ 用svm建立的模型进行预测,怎么预测的数据完全一样啊
1、首先输入数据集,分弯销析数据维度,可以看到共埋伍游有0,1,2,3四个类别,如下图所示。
Ⅳ 怎么安装libsvm工具箱
你的和我的抄情况一模一样。
我折腾了两天最后解决了。
因为matlab软件是在win XP是弄得,后来升级的win7最多支持到vista,所以直接安装不行。
我在装的时候,可以安装,但是打不开,后来发现,只要安装完之后再matlab的快捷方式下点击右键,在兼容性下面点击window XP下就可以了。卸载的时候也不能卸,需要找到uninstall.exe这个文件,同样在兼容性下面点击window XP下就可以了。如果你连安装都不能的话,那么就就在install.exe中点击右键,兼容性下面选择window XP,然后确定,就一切OK了。
Ⅳ 如何在MATLAB中添加SVM函数工具箱
1,下载SVM工具箱:http://see.xidian.e.cn/faculty/chzheng/bishe/indexfiles/indexl.htm
2,安装到matlab文件夹中
1)将下载的SVM工具箱的文件夹放在\matlab71\toolbox\下
2)打开matlab->File->Set Path中添加SVM工具箱的文件夹
现在,就成功的添加成功了.
可敬清以测试一下:在matlab中输纯大入which svcoutput 回车,如果可以正确显示路径,就证明添加成功了,例如:
C:\Program Files\MATLAB71\toolbox\svm\svcoutput.m
3,用SVM做分类的使用方法
1)在matlab中输入必要的参数:X,Y,ker,C,p1,p2
我做的测试中取的数据为:
N = 50;
n=2*N;
randn('state',6);
x1 = randn(2,N)
y1 = ones(1,N);
x2 = 5+randn(2,N);
y2 = -ones(1,N);
figure;
plot(x1(1,:),x1(2,:),'bx',x2(1,:),x2(2,:),'k.');
axis([-3 8 -3 8]);
title('亮裤前C-SVC')
hold on;
X1 = [x1,x2];
Y1 = [y1,y2];
X=X1';
Y=Y1';
其中,X是100*2的矩阵,Y是100*1的矩阵
C=Inf;
ker='linear';
global p1 p2
p1=3;
p2=1;
Ⅵ 如何在matlab中添加SVM工具箱以及初次应用
一、因为要用到SVM,所以想先在matlab下学习一下,简短讲添加工具箱很简单:
1.1:如果是Matlab安装光盘上的工具箱,重新执行安装程序,选中即可。
1.2:如果是单独下载的工具箱,则需要把新的工具箱(以下假设工具箱名字为svm)解压到toolbox目录下,然后用addpath或者pathtool把该工具箱的路径添加到matlab的搜索路径中,
2:最后用which newtoolbox_command.m来检验是否可以访问。如果能够显示新设置的路径,则表明该工具箱可以使用了。
SVM工具箱:>> addpath('D:\Program Files\MATLAB\R2008a\toolbox\svm')
>> which svcinfo.m
D:\Program Files\MATLAB\R2008a\toolbox\svm\svcinfo.m
成功~
PS:还有一些其他方法,可以参考:http://blog.lehu.shu.e.cn/smallworker/A31135.html
二、初次使用,采用差仿http://zyy554221.blog.sohu.com/82115143.html中的例子,但是出现了错逗庆销误信息:D:…………\toolbox\svm\qp.dll 不是有效的 Win32 应用程序,经过搜索看到有很多人出现这个问题,貌似是因山游为matlab版本比较高。
解决办法:1、command中输入
>> cd 'D:\Program Files\MATLAB\R2008a\toolbox\svm\Optimiser'
>> mex -v qp.c pr_loqo.c
2、出现:
This is mex, Copyright 1984-2007 The MathWorks, Inc.
Select a compiler:
[1] Lcc-win32 C 2.4.1 in D:\PROGRA~1\MATLAB\R2008a\sys\lcc\bin
[2] Microsoft Visual C++ 6.0 in D:\Program Files\Microsoft Visual Studio
[0] None
Compiler: (我选择了2),然后就出现很多东西……
3、Optimiser文件夹下看到两个文件:qp.dll.old和qp.mexw32;把qp.mexw32重命名为qp.dll覆盖svm文件夹下的qb.dll即可。
4,、然后应用例子,成功~~
Ⅶ 怎么在libsvm安装包基础上进行特征加权
一 安装
1. 下载
在LIBSVM的主页上下载最新版本的软件包,并解压到合适目录中。
2. 编译
如果你使用的是64位的操作的系统和Matlab,那么不需要进行编译步骤,因为自带软件包中已经包含有64位编译好的版本:libsvmread.mexw64、libsvmwrite.mexw64、svmtrain.mexw64、svmpredict.mexw64。否则,需要自己编译二进制文件。
首先在Mtlab中进入LIBSVM根目录下的matlab目录(如C:\libsvm-3.17\matlab),在命令窗口输入
>>mex –setup
然后Matlab会提示你选择编译mex文件的C/C++编译器,就选择一个已安装的编译器,如Microsoft Visual C++ 2010。之后Matlab会提示确认选择的编译器,输入y进行确认。
然后可以输入以下命令进行编译。
>>make
注意,Matlab或VC版本过低可能会导致编译失败,建议使用最新的版本。
编译成功后,当前目录下会出现若干个后缀为mexw64(64位系统)或mexw32(32位系统)的文件。
3. 重命名(可选,但建议执行)
编译完成后,在当前目录下回出现svmtrain.mexw64、svmpredict.mexw64(64位系统)或者svmtrain.mexw32、svmpredict.mexw32(32位系统)这两个文件,把文件名svmtrain和svmpredict相应改成libsvmtrain和libsvmpredict。
这是因为Matlab中自带有SVM的工具箱,而且其函数名字就是svmtrain和svmpredict,和LIBSVM默认的名字一样,在实际使用的时候有时会产生一定的问题,比如想调用LIBSVM的变成了调用Matlab SVM。
如果有进行重命名的,以后使用LIBSVM时一律使用libsvmtrain和libsvmpredict这两个名字进行调用。
4. 添加路径
为了以后使用的方便,建议把LIBSVM的编译好的文件所在路径(如C:\libsvm-3.17\matlab)添加到Matlab的搜索路径中。具体操作为:(中文版Matlab对应进行)
HOME -> Set Path -> Add Folder -> 加入编译好的文件所在的路径(如C:\libsvm-3.17\matlab)
当然也可以把那4个编译好的文件复制到想要的地方,然后再把该路径添加到Matlab的搜索路径中。
二 测试
LIBSVM软件包中自带有测试数据,为软件包根目录下的heart_scale文件,可以用来测试LIBSVM是否安装成功。这里的heart_scale文件不能用Matlab的load进行读取,需要使用libsvmread读取。
进入LIBSVM的根目录运行以下代码(因为heart_scale文件没有被添加进搜索路径中,其他路径下无法访问这个文件):
[heart_scale_label, heart_scale_inst] = libsvmread('heart_scale');
model = libsvmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07');
[predict_label, accuracy, dec_values] = libsvmpredict(heart_scale_label, heart_scale_inst, model);
如果LIBSVM安装正确的话,会出现以下的运行结果,显示正确率为86.6667%。
*
optimization finished, #iter = 134
nu = 0.433785
obj = -101.855060, rho = 0.426412
nSV = 130, nBSV = 107
Total nSV = 130
Accuracy = 86.6667% (234/270) (classification)
三 原理简介
使用SVM前首先得了解SVM的工作原理,简单介绍如下。
SVM(Support Vector Machine,支持向量机)是一种有监督的机器学习方法,可以学习不同类别的已知样本的特点,进而对未知的样本进行预测。
SVM本质上是一个二分类的算法,对于n维空间的输入样本,它寻找一个最优的分类超平面,使得两类样本在这个超平面下可以获得最好的分类效果。这个最优可以用两类样本中与这个超平面距离最近的点的距离来衡量,称为边缘距离,边缘距离越大,两类样本分得越开,SVM就是寻找最大边缘距离的超平面,这个可以通过求解一个以超平面参数为求解变量的优化问题获得解决。给定适当的约束条件,这是一个二次优化问题,可以通过用KKT条件求解对偶问题等方法进行求解。
对于不是线性可分的问题,就不能通过寻找最优分类超平面进行分类,SVM这时通过把n维空间的样本映射到更高维的空间中,使得在高维的空间上样本是线性可分的。在实际的算法中,SVM不需要真正地进行样本点的映射,因为算法中涉及到的高维空间的计算总是以内积的形式出现,而高维空间的内积可以通过在原本n维空间中求内积然后再进行一个变换得到,这里计算两个向量在隐式地映射到高维空间的内积的函数就叫做核函数。SVM根据问题性质和数据规模的不同可以选择不同的核函数。
虽然SVM本质上是二分类的分类器,但是可以扩展成多分类的分类器,常见的方法有一对多(one-versus-rest)和一对一(one-versus-one)。在一对多方法中,训练时依次把k类样本中的某个类别归为一类,其它剩下的归为另一类,使用二分类的SVM训练处一个二分类器,最后把得到的k个二分类器组成k分类器。对未知样本分类时,分别用这k个二分类器进行分类,将分类结果中出现最多的那个类别作为最终的分类结果。而一对一方法中,训练时对于任意两类样本都会训练一个二分类器,最终得到k*(k-1)/2个二分类器,共同组成k分类器。对未知样本分类时,使用所有的k*(k-1)/2个分类器进行分类,将出现最多的那个类别作为该样本最终的分类结果。
LIBSVM中的多分类就是根据一对一的方法实现的。
四 使用
关于LIBSVM在Matlab中的使用,可以参看软件包中matlab目录下的README文件,这里对里面内容做一个翻译和一些细节的讲解。
1. 训练
libsvm函数用于对训练集的数据进行训练,得到训练好的模型。
model = libsvmtrain(training_label_vector, training_instance_matrix [, 'libsvm_options']);
这个函数有三个参数,其中
-training_label_vector:训练样本的类标,如果有m个样本,就是m x 1的矩阵(类型必须为double)。这里可以是二分类和多分类,类标是(-1,1)、(1,2,3)或者其他任意用来表示不同的类别的数字,要转成double类型。
-training_instance_matrix:训练样本的特征,如果有m个样本,每个样本特征是n维,则为m x n的矩阵(类型必须为double)。
-libsvm_options:训练的参数,在第3点详细介绍。
2. 预测
libpredict函数用于对测试集的数据进行测试,还能对未知样本进行预测。
[predicted_label, accuracy, decision_values/prob_estimates]
= libsvmpredict(testing_label_vector, testing_instance_matrix, model [, 'libsvm_options']);
这个函数包括四个参数,其中
-testing_label_vector:测试样本的类标,如果有m个样本,就是m x 1的矩阵(类型必须为double)。如果类标未知,可以初始化为任意m x 1的double数组。
-testing_instance_matrix:测试样本的特征,如果有m个样本,每个样本特征是n维,则为m x n的矩阵(类型必须为double)。
-model:使用libsvmtrain返回的模型
-libsvm_options:预测的参数,与训练的参数形式一样。
3. 训练的参数
LIBSVM训练时可以选择的参数很多,包括:
-s svm类型:SVM设置类型(默认0)
0 — C-SVC; 1 –v-SVC; 2 – 一类SVM; 3 — e-SVR; 4 — v-SVR
-t 核函数类型:核函数设置类型(默认2)
0 – 线性核函数:u’v
1 – 多项式核函数:(r*u’v + coef0)^degree
2 – RBF(径向基)核函数:exp(-r|u-v|^2)
3 – sigmoid核函数:tanh(r*u’v + coef0)
-d degree:核函数中的degree设置(针对多项式核函数)(默认3)
-g r(gamma):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/k,k为总类别数)
-r coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)
-c cost:设置C-SVC,e -SVR和v-SVR的参数(损失函数)(默认1)
-n nu:设置v-SVC,一类SVM和v- SVR的参数(默认0.5)
-p p:设置e -SVR 中损失函数p的值(默认0.1)
-m cachesize:设置cache内存大小,以MB为单位(默认40)
-e eps:设置允许的终止判据(默认0.001)
-h shrinking:是否使用启发式,0或1(默认1)
-wi weight:设置第几类的参数C为weight*C (C-SVC中的C) (默认1)
-v n: n-fold交互检验模式,n为fold的个数,必须大于等于2
以上这些参数设置可以按照SVM的类型和核函数所支持的参数进行任意组合,如果设置的参数在函数或SVM类型中没有也不会产生影响,程序不会接受该参数;如果应有的参数设置不正确,参数将采用默认值。
4. 训练返回的内容
libsvmtrain函数返回训练好的SVM分类器模型,可以用来对未知的样本进行预测。这个模型是一个结构体,包含以下成员:
-Parameters: 一个5 x 1的矩阵,从上到下依次表示:
-s SVM类型(默认0);
-t 核函数类型(默认2)
-d 核函数中的degree设置(针对多项式核函数)(默认3);
-g 核函数中的r(gamma)函数设置(针对多项式/rbf/sigmoid核函数) (默认类别数目的倒数);
-r 核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)
-nr_class: 表示数据集中有多少类别,比如二分类时这个值即为2。
-totalSV: 表示支持向量的总数。
-rho: 决策函数wx+b中的常数项的相反数(-b)。
-Label: 表示数据集中类别的标签,比如二分类常见的1和-1。
-ProbA: 使用-b参数时用于概率估计的数值,否则为空。
-ProbB: 使用-b参数时用于概率估计的数值,否则为空。
-nSV: 表示每类样本的支持向量的数目,和Label的类别标签对应。如Label=[1; -1],nSV=[63; 67],则标签为1的样本有63个支持向量,标签为-1的有67个。
-sv_coef: 表示每个支持向量在决策函数中的系数。
-SVs: 表示所有的支持向量,如果特征是n维的,支持向量一共有m个,则为m x n的稀疏矩阵。
另外,如果在训练中使用了-v参数进行交叉验证时,返回的不是一个模型,而是交叉验证的分类的正确率或者回归的均方根误差。
5. 预测返回的内容
libsvmtrain函数有三个返回值,不需要的值在Matlab可以用~进行代替。
-predicted_label:第一个返回值,表示样本的预测类标号。
-accuracy:第二个返回值,一个3 x 1的数组,表示分类的正确率、回归的均方根误差、回归的平方相关系数。
-decision_values/prob_estimates:第三个返回值,一个矩阵包含决策的值或者概率估计。对于n个预测样本、k类的问题,如果指定“-b 1”参数,则n x k的矩阵,每一行表示这个样本分别属于每一个类别的概率;如果没有指定“-b 1”参数,则为n x k*(k-1)/2的矩阵,每一行表示k(k-1)/2个二分类SVM的预测结果。
6. 读取或保存
libsvmread函数可以读取以LIBSVM格式存储的数据文件。
[label_vector, instance_matrix] = libsvmread(‘data.txt’);
这个函数输入的是文件的名字,输出为样本的类标和对应的特征。
libsvmwrite函数可以把Matlab的矩阵存储称为LIBSVM格式的文件。
libsvmwrite(‘data.txt’, label_vector, instance_matrix]
这个函数有三个输入,分别为保存的文件名、样本的类标和对应的特征(必须为double类型的稀疏矩阵)。
五 更新:svdd扩展安装(2014.10)
从libsvm官网下载svdd工具箱,目前使用libsvm3.18以及svdd3.18版本。
svdd工具箱里面有一个matlab文件夹和3个文件svm.cpp、svm.h、svm-train.c。
将matlab文件夹中的文件svmtrain.c覆盖原libsvm的matlab文件夹中的文件。
将svm.cpp、svm.h、svm-train.c这3个文件覆盖libsvm文件夹下的相同文件。
按本文刚开始讲述的方法进行mex -setup、make等完成安装,根据需要进行改名以及添加Path。
Ⅷ matlab安装libsvm工具箱
遇到了同样的问题 测试也没有问题 调用的时候出现上面两个报错
Ⅸ 如何在matlab里安装libsvm包
1.下载好libsvm包
下载libsvm-3.21到随意一个地方,比如到安装路径下的 toolbox下——D:\MATLAB\R2014A\toolbox\下,并解压。
打开matlab,将libsvm-3.21\matlab 添加到路径,比如将:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab 添加到路径。
2.setup 第一次尝试
若提示没有C++编译器,则根据提示的网址去下载 winsdk_web.exe,然后 双击运行winsdk_web.exe,安装到最后若提示失败,则去卸载自带的visual studio 和 .netframework 4,然后再运行 winsdk_web.exe,提示缺少 .netframework 4,则自行下载安装,反复运行 winsdk_web.exe。
直到运行 winsdk_web.exe 时出现如下图所示情况,说明距成功更近一步了,
选择 Change,下一步,
勾选上 visual C++ compilers 和 microsoft visual C++ 2010,下一步,
最后提示成功安装。
2. setup
打开Matlab中,进入LIBSVM根目录下的matlab目录(如D:\MATLAB\R2014A\toolbox\libsvm-3.21),在命令窗口的输入mex -setup 输出为:
>>mex –setup
MEX 配置为使用 'Microsoft Windows SDK 7.1 (C)' 以进行 C 语言编译。
Warning: The MATLAB C and Fortran API has changed to support MATLAB
variables with more than 2^32-1 elements. In the near future
you will be required to update your code to utilize the
new API. You can find more information about this at:
http://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html.
要选择不同的语言,请从以下选项中选择一种命令:
mex -setup C++
mex -setup FORTRAN
继续:
>> mex -setup C++
MEX 配置为使用 'Microsoft Windows SDK 7.1 (C++)' 以进行 C++ 语言编译。
Warning: The MATLAB C and Fortran API has changed to support MATLAB
variables with more than 2^32-1 elements. In the near future
you will be required to update your code to utilize the
new API. You can find more information about this at:
http://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html.
3.编译
执行 make,输出如下:
>> make
使用 'Microsoft Windows SDK 7.1 (C)' 编译。
MEX 已成功完成。
使用 'Microsoft Windows SDK 7.1 (C)' 编译。
MEX 已成功完成。
使用 'Microsoft Windows SDK 7.1 (C++)' 编译。
找不到 D:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab\svmtrain.exp
找不到 D:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab\svmtrain.exp
MEX 已成功完成。
使用 'Microsoft Windows SDK 7.1 (C++)' 编译。
找不到 D:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab\svmpredict.exp
找不到 D:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab\svmpredict.exp
MEX 已成功完成。
>>
4.重命名
忽略错误(找不到……),继续,编译完成后,在当前目录下(libsvm-3.21/matlab下)会出现svmtrain.mexw64、svmpredict.mexw64 或者svmtrain.mexw32、svmpredict.mexw32 ,把文件名svmtrain和svmpredict 相应改成 libsvmtrain 和 libsvmpredict。
这是因为Matlab中自带有SVM的工具箱,其函数名字就是svmtrain和svmpredict,和 libsvm 默认的名字一样.
5.测试是否安装成功libsvm
libsvm 软件包中自带有测试数据,即软件包根目录下的 heart_scale 文件。
在matlab运行代码,输出如下:
>> [heart_scale_label, heart_scale_inst] = libsvmread('heart_scale');
>> model = libsvmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07');
*
optimization finished, #iter = 134
nu = 0.433785
obj = -101.855060, rho = 0.426412
nSV = 130, nBSV = 107
Total nSV = 130
>> [predict_label, accuracy, dec_values] = libsvmpredict(heart_scale_label, heart_scale_inst, model);
Accuracy = 86.6667% (234/270) (classification)
>>
OK ,perfect ! Congratulations to you!
如果遇到:
>> [heart_scale_label, heart_scale_inst] = libsvmread('heart_scale');
Invalid MEX-file 'C:\Users\jiao\Documents\MATLAB\libsvm-3.20\matlab\libsvmread.mexw64': 找不到指定的模块。
则把 D:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab 文件夹添加到路径就可以了。
Ⅹ 怎么在matlab平台上安装ls svmlab这个工具箱
第一步:首先将解压得到的文件夹拷贝到自己MATLAB的安装目录下,如
C:\Program Files\MATLAB\R2012b\toolbox\LSSVMlabv1_8_R2009b_R2011a
第二步:打开MATLAB,如果是Matlab7.0的话单击File,如何是2012的话在home面板上,靠近Layout那里有Set Path,然后选择Set Path这一选项,这时会出现Set Path的窗口,点击 Add Folder。。。将刚才拷贝到目录下的那个文件夹添加进来,点击Save,然后close。
第三步:检验工具箱是否添加成功:在MATLAB 的命令窗口中输入:
which tunelssvm.m
如果出现下面的情况:
>> which tunelssvm.m
C:\Program Files\MATLAB\R2012b\toolbox\LSSVMlabv1_8_R2009b_R2011a\tunelssvm.m
则表示安装成功。