导航:首页 > 五金知识 > matlab神模式识别工具箱评价参数

matlab神模式识别工具箱评价参数

发布时间:2023-02-21 15:05:21

1. Matlab神经网络工具箱输入问题

格式是对的,应该是可以的啊,你得仔细看看要导入的Targets数据到底在不在workspace中。

2. matlab神经网络工具箱怎么效果好

导入数据:选择合适的数据,一定要选数值矩阵形式
在这里插入图片描述在这里插入图片描述

进行训练
在这里插入图片描述

接下来就点next,选择输入输出,Sample are是选择以行还是列放置矩阵的,注意调整

在这里插入图片描述

接下来一直next,在这儿点train

在这里插入图片描述

查看结果

在这里插入图片描述

导出代码:再点next,直到这个界面,先勾选下面的,再点Simple Script生成代码
在这里插入图片描述

使用训练好的神经网络进行预测
使用下方命令,z是需要预测的输入变量,net就是训练好的模型

在这里插入图片描述

再将结果输出成excel就行啦

在这里插入图片描述

打开CSDN,阅读体验更佳

使用MATLAB加载训练好的caffe模型进行识别分类_IT远征军的博客-CSDN...
在进行下面的实验前,需要先对数据进行训练得到caffemodel,然后再进行分类识别 c_demo.m function [scores, maxlabel] = c_demo(im, use_gpu) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('/home/...
继续访问
MATLAB调用训练好的KERAS模型_LzQuarter的博客
下载了链接中的“kerasimporter.mlpkginstall”文件后,在matlab内用左侧的文件管理系统打开会进入一个页面,在该页面的右上角有安装的按钮,如果之前安装一直失败,可以通过这个安装按钮的下拉选项选择仅下载 下载还是有可能要用到VPN,但是相比...
继续访问
最新发布 matlab神经网络预测数据,matlab神经网络工具箱
Matlab语言是MathWorks公司推出的一套高性能计算机编程语言,集数学计算、图形显示、语言设计于一体,其强大的扩展功能为用户提供了广阔的应用空问。它附带有30多个工具箱,神经网络工具箱就是其中之一。谷歌人工智能写作项目:神经网络伪原创。
继续访问
matlab神经网络工具箱系统预测
matlab神经网络工具箱系统预测 有原始数据 根据原始数据预测未来十年内的数据
matlab预测控制工具箱
matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助 matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助
用matlab做bp神经网络预测,神经网络预测matlab代码
我觉得一个很大的原因是你预测给的输入范围(2014-)超出了训练数据的输入范围(2006-2013),神经网络好像是具有内插值特性,不能超出,你可以把输入变量-时间换成其他的变量,比如经过理论分析得出的某些影响因素,然后训练数据要包括大范围的情况,这样可以保证预测其他年份的运量的时候,输入变量不超出范围,最后预测的时候给出这几个影响因素的值,效果会好一点。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。
继续访问

BP神经网络预测实例(matlab代码,神经网络工具箱)
目录辛烷值的预测matlab代码实现工具箱实现 参考学习b站: 数学建模学习交流 bp神经网络预测matlab代码实现过程 辛烷值的预测 【改编】辛烷值是汽油最重要的品质指标,传统的实验室检测方法存在样品用量大,测试周期长和费用高等问题,不适用于生产控制,特别是在线测试。近年发展起来的近红外光谱分析方法(NIR),作为一种快速分析方法,已广泛应用于农业、制药、生物化工、石油产品等领域。其优越性是无损检测、低成本、无污染,能在线分析,更适合于生产和控制的需要。实验采集得到50组汽油样品(辛烷值已通过其他方法测
继续访问

用matlab做bp神经网络预测,matlab人工神经网络预测
ylabel('函数输出','fontsize',12);%画出预测结果误差图figureplot(error,'-*')title('BP网络预测误差','fontsize',12)ylabel('误差','fontsize',12)xlabel('样本','fontsize',12)。三、训练函数与学习函数的区别函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。.
继续访问
matlab训练神经网络模型并导入simulink详细步骤
之前的神经网络相关文章: Matlab-RBF神经网络拟合数据 Matlab RBF神经网络及其实例 4.深度学习(1) --神经网络编程入门 本文介绍一下怎么把训练好的神经网络导入到simulink并使用,假定有两个变量,一个输出变量,随机生成一点数据 x1 = rand(1000,1);x2 = rand(1000,1);x = [x1 x2];y = rand(1000,1); 在App里面找到神经网络工具箱 点击Next 选择对应的数据,注意选择好对应的输入和输出,还
继续访问

用matlab做bp神经网络预测,matlab神经网络怎么预测
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。如果你所选用的激活函数是线性函数,那么就可以先把输出的表达式写出来,即权向量和输入的矩阵乘积。
继续访问

matlab训练模型、导出模型及VC调用模型过程详解
MATLAB是美国MathWorks公司出品的商业数学软件,为算法开发、数据可视化、数据分析以及数值计算等提供了高级计算语言和交互式环境。随着人工智能的崛起,MATLAB也添加了自己的机器学习工具包,只需要很少的代码或命令就能完成模型训练和测试的过程,训练好的模型也能方便的导出,供VC等调用。本文主要介绍模型训练、导出和调用的整个过程。 软件版本: VC2015,matlab2018a ...
继续访问

matlab神经网络预测模型,matlab人工神经网络预测
谷歌人工智能写作项目:小发猫matlab带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子常见的神经网络结构。核心调用语句如下:%数据输入%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP网络训练%%初始化网络结构net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.0
继续访问

在Matlab中调用pytorch上训练好的网络模型
在Matlab中调用pytorch上训练好的网络模型
继续访问

MATLAB_第二篇神经网络学习_BP神经网络
BP神经网络代码实现1. BP神经网络的简介和结构参数1.1 BP神经网络的结构组成1.2 BP神经网络训练界面的参数解读 非常感谢博主wishes61的分享. 1. BP神经网络的简介和结构参数 一种按照误差逆向传播算法训练的多层前馈神经网络用于预测BP神经网络的计算过程:由正向计算过程和反向计算过程组成。 正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每一层神经元的状态只影响下一层神经元的状态。 如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各
继续访问

MATLAB神经网络拟合回归工具箱Neural Net Fitting的使用方法
本文介绍MATLAB软件中神经网络拟合(Neural Net Fitting)工具箱的具体使用方法~
继续访问

灰色预测工具箱matlab,Matlab灰色预测工具箱——走过数模
2009-07-02 23:05灰色预测几乎是每年数模培训必不可少的内容,相对来说也是比较简单,这里写了四个函数,方便在Matlab里面调用,分别是GM(1,1),残差GM(1,1),新陈代谢GM(1,1),Verhust自己写得难免有所疏忽,需要的朋友自己找本书本来试验一下。。Gm(1,1)function [px0,ab,rel]=gm11(x0,number)%[px0,ab,rel]=gm...
继续访问
matlab利用训练好的BP神经网络来预测新数据(先保存网络,再使用网络)
1,保存网络。save ('net') % net为已训练好的网络,这里把他从workspace保存到工作目录,显示为net.mat文档。 2,使用网络。load ('net') % net为上面保存的网络,这里把他下载到workspace。y_predict = sim(...
继续访问
数学建模学习(79):Matlab神经网络工具箱使用,实现多输入多输出预测
Matlab神经网络工具箱实现,实现多输入多输出预测
继续访问

热门推荐 如何利用matlab做BP神经网络分析(包括利用matlab神经网络工具箱)
利用MATLAB 进行BP神经网络的预测(含有神经网络工具箱) 最近一段时间在研究如何利用预测其销量个数,在网上搜索了一下,发现了很多模型来预测,比如利用回归模型、时间序列模型,GM(1,1)模型,可是自己在结合实际的工作内容,发现这几种模型预测的精度不是很高,于是再在网上进行搜索,发现神经网络模型可以来预测,并且有很多是结合时间序列或者SVM(支持向量机)等组合模型来进...
继续访问
bp神经网络预测案例python_详细BP神经网络预测算法及实现过程实例
1.具体应用实例。根据表2,预测序号15的跳高成绩。表2国内男子跳高运动员各项素质指标序号跳高成绩()30行进跑(s)立定三级跳远()助跑摸高()助跑4—6步跳高()负重深蹲杠铃()杠铃半蹲系数100(s)抓举()12.243.29.63.452.151402.811.05022.333.210.33.752.21203.410.97032.243.09.03.52.21403.511.4504...
继续访问
如何调用MATLAB训练神经网络生成的网络进行预测
如何调用MATLAB训练神经网络生成的网络问题引出知识准备代码注解 问题引出 如何存储和调用已经训练好的神经网络。 本人前几天在智能控制学习的过程中也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。通过不断调试,大致弄明白这两个函数对神经网络的存储。下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。 知识准备 如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口 输入:s
继续访问
matlab训练好的模型怎么用
神经网络

3. 利用Matlab对实验数据进行拟合求解参数

有关微分方程参数拟合的技术,已经有相关的讨论:1、基于matlab四种方法解决变参量常微分方程参数识别(回归) 2、基于MATLAB和Forcal进行微分方程参数拟合 3、一个典型隐式方程(通用有效介质方程)的拟合实例 总的来说微分方程参数拟合有三种方法:1.将原问题转换为一个优化问题,就是使拟合得到的结果和实验测量值之差的平方和最小,此时您可以调用MATLAB优化工具箱的所有函数,最这个目标进行优化,比如fmincon,ga,lsqnonlin等。 2 将问题看成一个超静定方程组,也就是说一组已知数据构成一个方程,如果有n测量数据就构成n组方程,此时fsolve函数可以搞定这个工作。 3..然当作一个拟合问题,而微分方程当作一个黑匣子,只是这个拟合的一直数据是测量的两组而已。这个时候lsqcurvefit、cftool和Simulink Design Optimization就可以大显身手了。不过调用lsqcurvefit和cftool函数来拟合,您必须对这两个函数熟悉呀,这个可是需要一定的MATLAB底子,不是一般的所谓大侠能够搞定的。 当然以上是高手的做法。 但如果你对Matlab只是一般性的了解的话推荐用插值拟合+数值微分的方法,如果实验数据够多误差是能满足一定要求的。

4. matlab中使用libsvm如何实现参数寻优

可以利用libsvm工具箱中自带的k折交叉验证方法进行参数的寻优。


k折交叉验证的基本思想如下:

k个子集,每个子集均做一次测试集,其余的作为训练集。交叉验证重复k次,每次选择一个子集作为测试集,并将k次的平均交叉验证识别正确率作为结果。


libsvm工具箱中交叉验证的使用方法如下:

predict=trian(data_label,data_train,cmd);
%train_label表示训练输出样本数据;
%data_train表示训练输入样本数据;
%cmd就是训练参数的设置,如设置为cmd='-v5'就表示进行5折交叉验证(该设置中省略了其他参数的设置,即保存默认设置)。

5. 如何使用matlab中的工具箱

首先,将下载的工具箱文件解压,将文件夹复制到MATLAB安装目录下toolbox文件夹下专。
其次,在MATLAB命令行中输属入如下命令:
>>cd D:\MATLAB7\toolbox\piotr_toolbox % 找到你的工具箱
>> addpath(genpath('D:\MATLAB7\toolbox\piotr_toolbox')) %增加路径
>> savepath %永久保存路径
最后,检查是否成功:
>>which hog %随便输入所加入工具箱中的一个m文件
D:\MATLAB7\toolbox\piotr_toolbox\channels\hog.m %得到此文件路径,即加载正确

6. 怎么使用matlab系统辨识工具箱

如果是系统自带的,你可以直接用,如果是外部的或者是自编的你需要先把文件夹拷贝到tools文件夹下,再设置路径。
Matlab常用工具箱介绍(英汉对照)
Matlab Main Toolbox——matlab主工具箱
Control System Toolbox——控制系统工具箱
Communication Toolbox——通讯工具箱
Financial Toolbox——财政金融工具箱
System Identification Toolbox——系统辨识工具箱
Fuzzy Logic Toolbox——模糊逻辑工具箱
Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱
Image Processing Toolbox——图象处理工具箱
LMI Control Toolbox——线性矩阵不等式工具箱
Model predictive Control Toolbox——模型预测控制工具箱
μ-Analysis and Synthesis Toolbox——μ分析工具箱
Neural Network Toolbox——神经网络工具箱
Optimization Toolbox——优化工具箱
Partial Differential Toolbox——偏微分方程工具箱
Robust Control Toolbox——鲁棒控制工具箱
Signal Processing Toolbox——信号处理工具箱
Spline Toolbox——样条工具箱
Statistics Toolbox——统计工具箱
Symbolic Math Toolbox——符号数学工具箱
Simulink Toolbox——动态仿真工具箱
System Identification Toolbox——系统辨识工具箱
Wavele Toolbox——小波工具箱

例如:控制系统工具箱包含如下功能:
连续系统设计和离散系统设计
状态空间和传递函数以及模型转换
时域响应(脉冲响应、阶跃响应、斜坡响应)
频域响应(Bode图、Nyquist图)
根轨迹、极点配置

较为常见的matlab控制箱有:

控制类:

控制系统工具箱(control systems toolbox)
系统识别工具箱(system identification toolbox)
鲁棒控制工具箱(robust control toolbox)
神经网络工具箱(neural network toolbox)
频域系统识别工具箱(frequency domain system identification toolbox)
模型预测控制工具箱(model predictive control toolbox)
多变量频率设计工具箱(multivariable frequency design toolbox)

信号处理类:
信号处理工具箱(signal processing toolbox)
滤波器设计工具箱(filter design toolbox)
通信工具箱(communication toolbox)
小波分析工具箱(wavelet toolbox)
高阶谱分析工具箱(higher order spectral analysis toolbox)

其它工具箱:
统计工具箱(statistics toolbox)
数学符号工具箱(symbolic math toolbox)
定点工具箱(fixed-point toolbox)
射频工具箱(RF toolbox)

1990年,MathWorks软件公司为Matlab提供了新的控制系统模型化图形输入与仿真工具,并命名为Simulab,使得仿真软件进入了模型化图形组态阶段,1992年正式命名为Simulink,即simu(仿真)和link(连接)。matlab7.0里的simulink为6.0版本,matlab6.5里的simulink为5.0版本。

MATLAB的SIMULINK子库是一个建模、分析各种物理和数学系统的软件,它用框图表示系统的各个环节,用带方向的连线表示各环节的输入输出关系。
启动SIMULINK十分容易,只需在MATLAB的命令窗口键入“SIMULINK”命令,此时出现一个SIMULINK窗口,包含七个模型库,分别是信号源库、输出库、离散系统库、线性系统库、非线性系统库及扩展系统库。
1.信号源库
包括阶跃信号、正弦波、白噪声、时钟、常值、文件、信号发生器等各种信号源,其中信号发生器可产生正弦波、方波、锯齿波、随机信号等波形。
2.输出库
包括示波器仿真窗口、MATLAB工作区、文件等形式的输出。
3.离散系统库
包括五种标准模式:延迟,零-极点,滤波器,离散传递函数,离散状态空间。
4.线性系统库
提供七种标准模式:加法器、比例环节、积分环节、微分环节、传递函数、零-极点、状态空间。
5.非线性系统库
提供十三种常用标准模式:绝对值、乘法、函数、回环特性、死区特性、斜率、继电器特性、饱和特性、开关特性等。
6.系统连接库包括输入、输出、多路转换等模块,用于连接其他模块。
7.系统扩展库
考虑到系统的复杂性,SIMULINK另提供十二种类型的扩展系统库,每一种又有多种模型供选择。
使用时只要从各子库中取出模型,定义好模型参数,将各模型连接起来,然后设置系统参数,如仿真时间、仿真步长、计算方法等。SIMULINK提供了Euler、RungeKutta、Gear、Adams及专用于线性系统的LinSim算法,用户根据仿真要求选择适当的算法。

当然,不同版本的Matlab/Simulink内容有所不同。

另外,Simulink还提供了诸如航空航天、CDMA、DSP、机械、电力系统等专业模块库,给快速建模提供了很大的便利。

7. 如何使用matlab中的ident工具箱进行系统辨识数学模型

使用matlab工具箱更为方便和直观: 1. 把u,y信号导入到工作空间里。 2. 用版ident命令打开matlab系统辨识权工具箱,然后点击import data,从新打开界面里导入工作空间的数据。然后可以通过图形查看该输入输出信号,或者在proprocess进行信号预处理。 3. 根据你的模型在estimate里选择linear parameter models,个人觉得你应该选择ARX结构,确定阶数,然后进行估计。 4. 在主界面里查看估计模型,并且可以和实际输出比较,看看拟合度。 详细使用方面参考 帮助文档 System Identification Toolbox User's Guide

8. matlab参数识别

主要错误是匿名函数书写不对,应该这样来写:

f=inline('a(1)*exp(-a(2).*x).*sin(a(3).*x)+a(4).*tanh(a(5)*x)+a(6).*(x./a(7)-x).^a(8)','a','x');

其他小问题,如自然指数函数书写错误,应为exp(),而不是eps()无穷小量。

注意:使用lsqcurvefit()时,其初值是不是唯一的,要根据y与f(x)的差值是否小(接近于零)而定。

9. 1.如何用MATLAB神经网络工具箱创建BP神经网络模型具体有哪些步骤请高手举实例详细解释下 2.如何把输

%人脸识别模型,脸部模型自己找吧。
function mytest()

clc;
images=[ ];
M_train=3;%表示人脸
N_train=5;%表示方向
sample=[];
pixel_value=[];
sample_number=0;

for j=1:N_train
for i=1:M_train
str=strcat('Images\',num2str(i),'_',num2str(j),'.bmp'); %读取图像,连接字符串形成图像的文件名。
img= imread(str);
[rows cols]= size(img);%获得图像的行和列值。
img_edge=edge(img,'Sobel');

%由于在分割图片中我们可以看到这个人脸的眼睛部分也就是位于分割后的第二行中,位置变化比较大,而且眼睛边缘检测效果很好

sub_rows=floor(rows/6);%最接近的最小整数,分成6行
sub_cols=floor(cols/8);%最接近的最小整数,分成8列
sample_num=M_train*N_train;%前5个是第一幅人脸的5个角度

sample_number=sample_number+1;
for subblock_i=1:8 %因为这还在i,j的循环中,所以不可以用i
block_num=subblock_i;
pixel_value(sample_number,block_num)=0;
for ii=sub_rows:(2*sub_rows)
for jj=(subblock_i-1)*sub_cols+1:subblock_i*sub_cols
pixel_value(sample_number,block_num)=pixel_value(sample_number,block_num)+img_edge(ii,jj);
end
end
end
end
end
%将特征值转换为小于1的值
max_pixel_value=max(pixel_value);
max_pixel_value_1=max(max_pixel_value);
for i=1:3
mid_value=10^i;
if(((max_pixel_value_1/mid_value)>1)&&((max_pixel_value_1/mid_value)<10))
multiple_num=1/mid_value;
pixel_value=pixel_value*multiple_num;
break;
end
end

% T 为目标矢量
t=zeros(3,sample_number);
%因为有五类,所以至少用3个数表示,5介于2的2次方和2的3次方之间
for i=1:sample_number
% if((mod(i,5)==1)||(mod(i,5)==4)||(mod(i,5)==0))
if(i<=3)||((i>9)&&(i<=12))||((i>12)&&(i<=15))
t(1,i)=1;
end
%if((mod(i,5)==2)||(mod(i,5)==4))
if((i>3)&&(i<=6))||((i>9)&&(i<=12))
t(2,i)=1;
end
%if((mod(i,5)==3)||(mod(i,5)==0))
if((i>6)&&(i<=9))||((i>12)&&(i<=15))
t(3,i)=1;
end
end

% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真

% 定义训练样本
% P 为输入矢量
P=pixel_value'
% T 为目标矢量
T=t
size(P)
size(T)
% size(P)
% size(T)

% 创建一个新的前向神经网络
net_1=newff(minmax(P),[10,3],{'tansig','purelin'},'traingdm')

% 当前输入层权值和阈值
inputWeights=net_1.IW{1,1}
inputbias=net_1.b{1}
% 当前网络层权值和阈值
layerWeights=net_1.LW{2,1}
layerbias=net_1.b{2}

% 设置训练参数
net_1.trainParam.show = 50;
net_1.trainParam.lr = 0.05;
net_1.trainParam.mc = 0.9;
net_1.trainParam.epochs = 10000;
net_1.trainParam.goal = 1e-3;

% 调用 TRAINGDM 算法训练 BP 网络
[net_1,tr]=train(net_1,P,T);

% 对 BP 网络进行仿真
A = sim(net_1,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)

x=[0.14 0 1 1 0 1 1 1.2]';
sim(net_1,x)

阅读全文

与matlab神模式识别工具箱评价参数相关的资料

热点内容
7213轴承怎么按装 浏览:178
好贵阳五金机电市场 浏览:477
消火栓栓头是什么阀门 浏览:349
什么仪器测量眼睛近视 浏览:366
杭州诚宇焊接设备有限公司怎么样 浏览:988
魅工具箱锁屏通知 浏览:676
仪表台的gps怎么拆 浏览:186
煤气自动熄火装置怎么用的 浏览:594
阀门手柄按什么方向旋转了多少度 浏览:337
回转支承轴承如何制作 浏览:971
宾格机械表月历怎么条 浏览:632
超声波的声音叫什么 浏览:991
广佛五金机电网 浏览:942
像自行车链条这样的装置叫做传动装置 浏览:10
机械厂有哪些部门 浏览:570
机床油缸怎么打表 浏览:878
什么仪器看到分子 浏览:616
机器设备预付款如何按比例开票 浏览:281
机械键鼠什么牌子 浏览:146
工具箱记录什么科目 浏览:184