导航:首页 > 五金知识 > csdn博客神经网络工具箱

csdn博客神经网络工具箱

发布时间:2022-11-19 14:41:00

A. 怎么使用matlab系统辨识工具箱

如果是系统自带的,你可以直接用,如果是外部的或者是自编的你需要先把文件夹拷贝到tools文件夹下,再设置路径。
Matlab常用工具箱介绍(英汉对照)
Matlab Main Toolbox——matlab主工具箱
Control System Toolbox——控制系统工具箱
Communication Toolbox——通讯工具箱
Financial Toolbox——财政金融工具箱
System Identification Toolbox——系统辨识工具箱
Fuzzy Logic Toolbox——模糊逻辑工具箱
Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱
Image Processing Toolbox——图象处理工具箱
LMI Control Toolbox——线性矩阵不等式工具箱
Model predictive Control Toolbox——模型预测控制工具箱
μ-Analysis and Synthesis Toolbox——μ分析工具箱
Neural Network Toolbox——神经网络工具箱
Optimization Toolbox——优化工具箱
Partial Differential Toolbox——偏微分方程工具箱
Robust Control Toolbox——鲁棒控制工具箱
Signal Processing Toolbox——信号处理工具箱
Spline Toolbox——样条工具箱
Statistics Toolbox——统计工具箱
Symbolic Math Toolbox——符号数学工具箱
Simulink Toolbox——动态仿真工具箱
System Identification Toolbox——系统辨识工具箱
Wavele Toolbox——小波工具箱

例如:控制系统工具箱包含如下功能:
连续系统设计和离散系统设计
状态空间和传递函数以及模型转换
时域响应(脉冲响应、阶跃响应、斜坡响应)
频域响应(Bode图、Nyquist图)
根轨迹、极点配置

较为常见的matlab控制箱有:

控制类:

控制系统工具箱(control systems toolbox)
系统识别工具箱(system identification toolbox)
鲁棒控制工具箱(robust control toolbox)
神经网络工具箱(neural network toolbox)
频域系统识别工具箱(frequency domain system identification toolbox)
模型预测控制工具箱(model predictive control toolbox)
多变量频率设计工具箱(multivariable frequency design toolbox)

信号处理类:
信号处理工具箱(signal processing toolbox)
滤波器设计工具箱(filter design toolbox)
通信工具箱(communication toolbox)
小波分析工具箱(wavelet toolbox)
高阶谱分析工具箱(higher order spectral analysis toolbox)

其它工具箱:
统计工具箱(statistics toolbox)
数学符号工具箱(symbolic math toolbox)
定点工具箱(fixed-point toolbox)
射频工具箱(RF toolbox)

1990年,MathWorks软件公司为Matlab提供了新的控制系统模型化图形输入与仿真工具,并命名为Simulab,使得仿真软件进入了模型化图形组态阶段,1992年正式命名为Simulink,即simu(仿真)和link(连接)。matlab7.0里的simulink为6.0版本,matlab6.5里的simulink为5.0版本。

MATLAB的SIMULINK子库是一个建模、分析各种物理和数学系统的软件,它用框图表示系统的各个环节,用带方向的连线表示各环节的输入输出关系。
启动SIMULINK十分容易,只需在MATLAB的命令窗口键入“SIMULINK”命令,此时出现一个SIMULINK窗口,包含七个模型库,分别是信号源库、输出库、离散系统库、线性系统库、非线性系统库及扩展系统库。
1.信号源库
包括阶跃信号、正弦波、白噪声、时钟、常值、文件、信号发生器等各种信号源,其中信号发生器可产生正弦波、方波、锯齿波、随机信号等波形。
2.输出库
包括示波器仿真窗口、MATLAB工作区、文件等形式的输出。
3.离散系统库
包括五种标准模式:延迟,零-极点,滤波器,离散传递函数,离散状态空间。
4.线性系统库
提供七种标准模式:加法器、比例环节、积分环节、微分环节、传递函数、零-极点、状态空间。
5.非线性系统库
提供十三种常用标准模式:绝对值、乘法、函数、回环特性、死区特性、斜率、继电器特性、饱和特性、开关特性等。
6.系统连接库包括输入、输出、多路转换等模块,用于连接其他模块。
7.系统扩展库
考虑到系统的复杂性,SIMULINK另提供十二种类型的扩展系统库,每一种又有多种模型供选择。
使用时只要从各子库中取出模型,定义好模型参数,将各模型连接起来,然后设置系统参数,如仿真时间、仿真步长、计算方法等。SIMULINK提供了Euler、RungeKutta、Gear、Adams及专用于线性系统的LinSim算法,用户根据仿真要求选择适当的算法。

当然,不同版本的Matlab/Simulink内容有所不同。

另外,Simulink还提供了诸如航空航天、CDMA、DSP、机械、电力系统等专业模块库,给快速建模提供了很大的便利。

B. matlab怎么打开神经网络工具箱

在matlab命令窗口中,输入>>nnstart %回车后就会弹出神经网络工具箱主窗口。

C. matlab神经网络工具箱分别怎么用

1单击Apps,在搜索框中输入neu,下方出现了所有神经网络工具箱。neural net fitting 是我们要使用的神经网络拟合工具箱。 2 在下界面中点击next 3 单击load example data set,得到我们需要的测试数据。

D. matlab的神经网络工具箱问题

线性神经网络的构建:
net=newlin(PR,S,ID,LR)
PR--Rx2阶矩阵,R个输入元素的最小最大矩阵
S---输出层神经元个数
ID--输入延迟向量,默认值为[0]
IR--学习率,默认值为0.01

net = newlin([-1 1;-1 1],1); 表示设计的是一个双输入单输出线性神经网络
P = [1 2 2 3; 2 1 3 1];表示输入样本有四个,每一列就是一个输入样本
又比如假设我们期望的输出为 T=[1 2 3 4],则一个简单的神经网络如下:

>>net = newlin([-1 1;-1 1],1);%创建初始网络
P=[1 2 2 3; 2 1 3 1]%输入
T=[1 2 3 4]%期望的输出
net=newlind(P,T);%用输入和期望训练网络
Y=sim(net,P)%仿真,可以看到仿真结果Y和期望输出T的接近程度
P =
1 2 2 3
2 1 3 1
T =
1 2 3 4
Y =
0.8889 2.1667 3.0556 3.8889

楼主可以从《matlab神经网络与应用(第二版)》董长虹 开始入门神经网络的matlab实现

参考资料:《matlab神经网络与应用(第二版)》

E. 神经网络工具箱与编程实现哪个更好

首先说一下神经网络工具箱,在我刚刚接触神经网络的时候,我就利用工具箱去解决问题,这让我从直观上对神经网络有了了解,大概清楚了神经网络的应用范围以及它是如何解决实际问题的。
工具箱的优势在于我们不用了解其内部的具体实现,更关注于模型的建立与问题的分析,也就是说,如果抛开算法的错误,那么用工具箱来解决实际问题会让我们能把更多的精力放在实际问题的模型建立上,而不是繁琐的算法实现以及分析上。

其次谈谈编程实现神经网络,由于个人能力有限,所以只是简单的编程实现过一些基本神经算法,总的体会就是编程的过程让我对算法有了更透彻的理解,可以更深入的分析其内部运行机制,也同样可以实现一下自己的想法,构建自己的神经网络算法。

以上是我对两个方法的简单理解。那究竟哪个方法更好些呢?我个人的看法是要看使用者的目的是怎样的。

如果使用者的目的在于解决实际问题,利用神经网络的函数逼近与拟合功能实现自己对实际问题的分析与模型求解,那我的建议就是利用神经网络工具箱,学过编程语言的人都知道,无论用什么编程语言将一个现有的算法编程实现达到可用的结果这一过程都是及其繁琐与复杂的,就拿简单的经典BP神经网络算法来说,算法本身的实现其实并不难,可根据不同人的能力,编出来的程序的运行效率是大不相同的,而且如果有心人看过matlab的工具箱的源码的话,应该能发现,里面采用的方法并不完全是纯粹的BP经典算法,一个算法从理论到实现还要依赖与其他算法的辅助,计算机在计算的时候难免出现的舍入误差,保证权值的时刻改变,这都是编程人员需要考虑的问题,可能还有很多的问题
这样的话,如果自己单人编程去实现神经网络来解决实际问题的话,整体效率就没有使用工具箱更好。

如果使用者的目的在于分析算法,构造新的网络的话那当然首推自己编程实现。个人的感觉就是,如果真的是自己完全编程实现的话,对算法会有很深入的理解,在编程的调试过程中,也会领悟到很多自己从前从来没有考虑过的问题,像权值的初始的随机选取应该怎么样,将训练样本按什么顺序输入等,这都是编程实现所要考虑的问题,不同的方法得到的结果会有很大的差距。

F. Matlab神经网络工具箱输入问题

格式是对的,应该是可以的啊,你得仔细看看要导入的Targets数据到底在不在workspace中。

G. 如何用c#调用Matlab神经网络的工具箱

如果是用Matlab提供的GUI界面,在命令窗口输入命令nntool回车即可。 建议不要用GUI界面,直接在代码中调用神经网络工具箱,使用更方便,参数设置更明了。神经网络工具箱提供多个函数接口,不同的神经网络对应不同的函数

H. MATLAB神经网络工具箱configure函数使用

你想要什么解释?这句话是在为你的神经网络(net)配置每个RTDX缓冲channel中的字节位数版(p)和缓冲权channel的数量(t)。RTDX(real time data exchange)实时数据交换。如果你懂低级计算机编程语言的话应该很好理解。这句话基本可以大致理解为为你的神经网络划出一个计算的空间。神经网络算法本身极其复杂,甚至有很多conference是专门讨论该算法的。matlab作为高级程序语言,出发点是把所有算法打包好使用户方便使用。要做到这个对一些基础算法来说并不难。但是神经网络本身就是一大堆算法的集成,简单打包算法不太可能。使用这个工具箱你只需要知道大致原理,再找几个模板依样画葫芦练习一下就可以了,没必要全弄明白

I. 在哪能下的matlab的神经网络工具箱

MATLAB的神经自网络工具箱是内置的,如果完全安装了MATLAB,那么你可以在MATLAB的帮助页面上(帮助页面可以在Comand Window下输入'help help '(不名括单引号),然后看Contents里有 Neural Network Toolbox。

神经网络工具箱有个教学GUI,可以在Comand Window下输nnd'(不名括单引号,小写)(因为这个教学GUI是和一本书结合的,这本书叫Neural Network Design,作者Martin T.Hagan,Howard B.Demuth,强烈推荐学习这本经典教材,会让你入门并稍有进阶)

J. matlab怎么打开神经网络工具箱

打开matlab 在命令窗口输入nntool 回车
开始菜单里也有
goodluck

阅读全文

与csdn博客神经网络工具箱相关的资料

热点内容
实验室制乙酸乙酯装置改装 浏览:757
仪表盘三个圈是什么 浏览:873
法兰阀门链接需要什么附件 浏览:743
矿山机械企业有哪些 浏览:795
别克gl8工具箱图片 浏览:47
梁发记机床怎么样 浏览:517
铜球阀门是什么东西 浏览:456
crv仪表盘出现扳手还能开多少公里 浏览:695
机械硬盘和固态硬盘的结构区别是什么意思 浏览:134
电信设备租赁费的税率是多少 浏览:159
机器的哪些部位容易造成机械伤害 浏览:489
蘑菇发酵隧道设备多少钱 浏览:612
北京高压平板膜片测试设备哪里有 浏览:427
皇冠仪表盘如何调 浏览:808
发动机曲轴主轴承润滑方式为什么 浏览:795
楼道暖气管子阀门坏了归谁管 浏览:422
现代车仪表灯有多少种 浏览:628
什么是机械感 浏览:329
艾力绅车的仪表盘怎么显示油耗 浏览:879
五菱轮胎轴承坏了换一个多少钱 浏览:270