㈠ matlab 里面数据拟合工具箱使用
不是matlab安装的问题,这个问题我也遇到过,遍求解答无果之后,终于自己摸索出来了。是这样的,不要用GUI中的data按钮来新建数据集,而要在matlab命令窗口中,输入命令:cftool(a,b),其中a,b就是你要设置的x、y坐标的向量。这样出来散点图,之后再在cftool工具箱的GUI中点fitting按钮,选择曲线拟合
㈡ 拟合直接用matlab的cftool拟合工具怎么样
cftool(CurveFittingToolbox?)工具箱主要是针对数据拟合的。使用起来特别的强大,尤其对于数据的处理超级方便,可以直接对于数据拟合,并且可以预设各种的拟合方案。这里注意的是非线性的也可以进行拟合,例如:幂律,高斯等等。
更详细的功能描述:CurveFittingToolbox峁┝擞糜诮吆颓婺夂系绞莸挠τ贸绦蚝凸δ堋8霉ぞ呦淇扇媚葱刑剿餍允莘治觯ご_砗秃蟠_硎荩冉虾蜓∧P筒⑸境斐V怠D梢允褂锰峁┑南咝院头窍咝阅P涂饨谢毓榉治觯部梢灾付ㄗ约旱淖远ㄒ宸匠淌健8每馓峁┝擞呕那蠼馄鞑问推鹗继跫蕴岣吣夂现柿俊8霉ぞ呦浠怪С址遣问_<际酰缪酰逯岛推交4唇_夂虾螅梢杂τ酶髦趾蟠_矸椒ń谢嫱迹诓搴屯馔啤9兰浦眯徘洌徊⒓扑慊趾偷际?
㈢ matlab 使用拟合工具箱拟合曲线发现效果都不好,球建议。
不用拟合工具箱,用最小二乘法拟合试试~~看看哪个效果好吧~~
㈣ 如何利用MATLAB对数据进行曲线拟合
您好,这样的:一、 单一变量的曲线逼近
Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线
性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447
296.204 311.5475]
》y=[5 10 15 20 25 30 35 40 45 50]
2、启动曲线拟合工具箱
》cftool
3、进入曲线拟合工具箱界面“Curve Fitting tool”
(1)点击“Data”按钮,弹出“Data”窗口;
(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然
后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数
据集的曲线图;
(3)点击“Fitting”按钮,弹出“Fitting”窗口;
(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单
选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类
型有:
Custom Equations:用户自定义的函数类型
Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x)
Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w)
Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)
Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-
preserving
Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~
Power:幂逼近,有2种类型,a*x^b 、a*x^b + c
Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th
degree ~;此外,分子还包括constant型
Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)
Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1)
Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置:
——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改
待估计参数的上下限等参数;
——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear
Equations线性等式”和“General Equations构造等式”两种标签。
在本例中选Custom Equations,点击“New”按钮,选择“General Equations”标签,输入函
数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。
㈤ Matlab拟合工具箱
用matlab拟合工具箱,拟合后的参数是不能用命令转出。只能通过复制粘帖的方法,将结果输出。但你可以用fittype()和fit()命令,来达到你的目的,其输出形式与拟合工具箱基本是一致的。
㈥ 如何用matlab数据拟合函数
Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0。
1、在命令行输入数据:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475];
》y=[5 10 15 20 25 30 35 40 45 50];
2、启动曲线拟合工具箱
》cftool
3、进入曲线拟合工具箱界面“Curve Fitting tool”
(1)点击“Data”按钮,弹出“Data”窗口;
(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;
(3)点击“Fitting”按钮,弹出“Fitting”窗口;
(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:
Custom Equations:用户自定义的函数类型
Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x)
Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w)
Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)
Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving
Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~
Power:幂逼近,有2种类型,a*x^b 、a*x^b + c
Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型
Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)
Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1)
Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
㈦ matlab的拟合问题
fit 返回的拟合函数是把自变量x进行规范化的(normalized),也就是说,
ff(x)=a*x^3+b*x^2+c*x+d
中的x,并不是你的原始数据,而是经过规范化的数据,即 (原始数据-均值)/ 标准差,其中均值和标准差可以在图中看到。
事实上,用fit拟合得到的结果为cfit对象,计算函数值时不应该用题主的方式,而应该用feval:
feval(ff,500)
㈧ matlab2014曲线拟合工具箱怎么输入数据
您好,这样的:一、 单一变量的曲线逼近
Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线
性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447
296.204 311.5475]
》y=[5 10 15 20 25 30 35 40 45 50]
2、启动曲线拟合工具箱
》cftool
3、进入曲线拟合工具箱界面“Curve Fitting tool”
(1)点击“Data”按钮,弹出“Data”窗口;
(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然
后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数
据集的曲线图;
(3)点击“Fitting”按钮,弹出“Fitting”窗口;
(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单
选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类
型有:
Custom Equations:用户自定义的函数类型
Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x)
Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w)
Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)
Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-
preserving
Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~
Power:幂逼近,有2种类型,a*x^b 、a*x^b + c
Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th
degree ~;此外,分子还包括constant型
Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)
Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1)
Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置:
——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改
待估计参数的上下限等参数;
——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear
Equations线性等式”和“General Equations构造等式”两种标签。
在本例中选Custom Equations,点击“New”按钮,选择“General Equations”标签,输入函
数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。
(5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例:
general model:
f(x) = a*x*x+b*x
Coefficients (with 95% confidence bounds):
a = 0.009194 (0.009019, 0.00937)
b = 1.78e-011 (fixed at bound)
Goodness of fit:
SSE: 6.146
R-square: 0.997
Adjusted R-square: 0.997
RMSE: 0.8263
同时,也会在工具箱窗口中显示拟合曲线。
这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“
Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。
不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变
量只能有一个。对于混合型的曲线,例如 y = a*x + b/x ,工具箱的拟合效果并不好。下一
篇文章我介绍帮同学做的一个非线性函数的曲线拟合。
㈨ Matlab拟合工具箱
您好,这样的:一、
单一变量的曲线逼近
matlab有一个功能强大的曲线拟合回工具箱
cftool
,使用方便,能实现多种答类型的线性、非线
性曲线拟合。下面结合我使用的
matlab
r2007b
来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是
y=a*x...
㈩ matlab拟合工具箱weights什么意思
polyfit最小二乘法拟合,一般这个就很好用 高级一点的,start——toolboxs——curve fitting——curve fitting tool 用拟合工具箱,这里包括了常用的所有拟合函数。你也可以自己定义函数拟合求出你要的系数。一般matlab书上都会介绍工具箱的用法。