『壹』 matlab遗传算法工具箱优化结果数值
ga就是在穷举不可能完成时,用一种方式找到最优解
ga工具的完整形式如下表示
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES] =
GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)
X是最优自变量
FVAL是求得的最优值
其他以此是推出标志,结构体,终止时的总群,终止时种群函数值
后半部分以此是目标函数,目标函数自变量个数
A和b是线性约束不等式AX〈b
Aeq和beq是一对线性等式约束,AeqX=beq
lb是X值下限,ub是X值下限
NONLCON是非线性约束函数 options是运行方式。这两个可以写函数自己完成,也可默认
函数默认计算最小值,计算最大值要加负号
『贰』 matlab的遗传算法优化工具箱怎么用
如果按照默认设来置来运行GA,输入源fitness函数和未知量个数,就可以运行了。通常,优化问题的目标函数就是fitness函数。如果想重新设置一下GA的参数,可在options处,设置,具体参数设置还要看看帮助文件。
『叁』 如何用遗传算法实现多变量的最优化问题
是不是像求函数最值那样子?建议你了解一下遗传算法的实数编码,这个对于求函数最值很方便,不用像二进制那样需要转换。
简单介绍一下思路:
最重要的是确定适应度函数,只要确定这个函数就很容易了,就用你不会编程,直接调用matlab的工具箱就行了。
1st.设置种群规模,并初始化种群p,并计算各个个体的适应度。
例如,20个个体,每个个体包含5个变量,x1,x2,x3,x4,x5.
如果你用matlab来编程的话,这个可以很容易实现,会用到random('unif',a,b)这个函数吧。
例如x1的取值范围是[0,1],那么x1=random('unif',0,1).
2nd.采用轮盘赌选出可以产生后代的父本,p_parents。
额,轮盘赌的实质就是适应度大的被选出的概率大。这个不难,但说起来比较长,你可以自己去看一下。
3rd.杂交过程的思路随机将p_parents中的个体随机两两配对,然后随机产生一个1到n的数(n为变量的个数),设为i,交换每对父本中i之后的变量值。交换以后的p_parents成为后代p_offspring.
这里变起来有点点复杂,不过只要耐心一点,编好配对过程和交换过程。
4th.变异过程,这个比较简单,不过需要自己把握的较好。
基本的思路是设置一个概率,例如0.05,然后产生一个随机数如果随机数比0.05小那么这个变量值就要产生微小的增加或减少。
这个变异过程要历遍p_offspring所有的变量喔。
5th.将p和p_offspring合并起来,然后选出适应度大的,重新构成一个如原始种群规模相等的种群。
『肆』 MATLAB遗传算法工具箱求解非线性多目标优化问题
将下属两个目标函数分别保存在两个m文件中
function f1=func1(x) %第一目标函数
f1=x(:,1).*x(:,1)./4+x(:,2).*x(:,2)./4;
function f2=func2(x) %第二目标函数
f2=x(:,1).*(1-x(:,2))+10;
function GA()
clear;clc;close all
NIND=100; %个体数目
MAXGEN=50; %最大遗传代数
NVAR=2; %变量个数
PRECI=20; %变量的二进制位数
GGAP=0.9; %代沟
trace1=[];trace2=[];trace3=[]; %性能跟踪
%建立区域描述器
% rep([PRECI],[1,NVAR])
FieldD=[rep([PRECI],[1,NVAR]);rep([1;2],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Chrom=crtbp(NIND,NVAR*PRECI); %初始种群
v=bs2rv(Chrom,FieldD) ; %初始种群十进制转换
gen=1;
while gen<MAXGEN,
[NIND,N]=size(Chrom);
M=fix(NIND/2);
ObjV1=func1(v(1:M,:)); %分组后第一目标函数值
FitnV1=ranking(ObjV1); %分配适应度值
SelCh1=select('sus',Chrom(1:M,:),FitnV1,GGAP); %选择
ObjV2=func2(v(M+1:NIND,:)); %分组后第二目标函数值
FitnV2=ranking(ObjV2); %分配适应度值
SelCh2=select('sus',Chrom(M+1:NIND,:),FitnV2,GGAP); %选择
SelCh=[SelCh1;SelCh2]; %合并
SelCh=recombin('xovsp',SelCh,0.7); %重组
Chrom=mut(SelCh); %变异
v=bs2rv(Chrom,FieldD);
trace1(gen,1)=min(func1(v));
trace1(gen,2)=sum(func1(v))/length(func1(v));
trace2(gen,1)=min(func2(v));
trace2(gen,2)=sum(func2(v))/length(func2(v));
trace3(gen,1)=min(func1(v)+func2(v));
trace3(gen,2)=sum(func1(v))/length(func1(v))+sum(func2(v))/length(func2(v));
gen=gen+1;
end
figure(1);clf;
plot(trace1(:,1));hold on;plot(trace1(:,2),'-.');
plot(trace1(:,1),'.');plot(trace1(:,2),'.');grid on;
legend('解的变化','种群均值的变化')
xlabel('迭代次数');ylabel('目标函数值');
figure(2);clf;
plot(trace2(:,1));hold on;
plot(trace2(:,2),'-.');
plot(trace2(:,1),'.');
plot(trace2(:,2),'.');grid;
legend('解的变化','种群均值的变化');
xlabel('迭代次数');ylabel('目标函数值');
figure(3);clf;
plot(trace3(:,1));hold on;
plot(trace3(:,2),'-.');
plot(trace3(:,1),'.');
plot(trace3(:,2),'.');grid;
legend('解的变化','种群均值的变化');
xlabel('迭代次数');ylabel('目标函数值');
figure(4);clf;plot(func1(v));hold on;
plot(func2(v),'r-.');grid;
『伍』 如何用遗传算法实现多变量的最优化问题
将多个变量的数值编码编排进去,进行组合,只需要增长基因个体的长度,但是要明确每个变量具体的位置,然后让每个变量转化成二进制的等长编码,组合在一起,就可以来运算了。
具体操作步骤如下:
1、首先要利用一个矩阵去跟踪每组迭代的结果的大小:
2、然后,要构造一个译码矩阵FieldD,由bs2rv函数将种群Chrom根据译码矩阵换成时值向量,返回十进制的矩阵:
且FieldD矩阵的结构如下:
3、要先将目标函数显示出来,看看基本的函数的形式:
4、设计遗传算法的参数估计:
5、经遗传算法之后,这个最优解的位置是:(图中标记蓝点的位置)
『陆』 如何调用MATLAB遗传算法工具箱
1、打开MATLAB软件。
『柒』 运用MATLAB遗传算法工具箱求解非线性多目标优化问题,烦请高人指点!
matlab中没有rep这个函数,需要你自己定义这个函数。
『捌』 用遗传算法工具箱求解一个多目标优化问题,现在需要一个matlab程序,求高人指点
用遗传算法工具箱求解一个多目标优化问题的步骤:
1、根据题意,建立自定专义目标函数,ga_fun1(x)
2、在命令窗属口中,输入
>> optimtool %调用遗传算法工具箱
3、在遗传算法工具箱界面中,分别对Fitnessfunction框内输入@ga_fun1();A框内输入[1,1,1];b框内输入16;Aeq框内输入[];beq框内输入[];Lower框内输入[0,0,0];Upper框内输入[];
4、单击Start。得到x=4.508 y=2.513 z=1.912值。
『玖』 MATLAB遗传算法工具箱优化变量定义问题
你定义的目标函数有问题。应把h1、h2、h3看成一个变量组,即h=[h1,h2,h3],即
function y=Fitfun1(h)
y=25*h(1)+50*h(2)-10*h(3) %为了说回明问题,把函数表达答式写成该形式
如还不能理解,最好把具体问题贴出来,包括其约束条件,以便我们帮助你。
『拾』 matlab优化工具箱中遗传算法的问题
ga就是在穷举不可能完成时,用一种方式找到最优解
ga工具的完整形式如下表示
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES] =
GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)
X是最优自变量
FVAL是求得的最优值
其他以此是推出标志,结构体,终止时的总群,终止时种群函数值
后半部分以此是目标函数,目标函数自变量个数
A和b是线性约束不等式AX〈b
Aeq和beq是一对线性等式约束,AeqX=beq
lb是X值下限,ub是X值下限
NONLCON是非线性约束函数 options是运行方式。这两个可以写函数自己完成,也可默认
函数默认计算最小值,计算最大值要加负号
非线性约束条件的写法
function [c,ceq]=nonlcon(x) 定义函数自变量是x,x可以是一列矩阵
c=[]; c表示非线性等式约束,以为没有,所以为空
ceq=[x(1)-2*(x(2))^2;
x(1)+X(2) ] ceq是非线性不等式约束,默认ceq<=0,ceq可以为一列矩阵.
>>