导航:首页 > 五金知识 > 粒子群算法工具箱怎么调用

粒子群算法工具箱怎么调用

发布时间:2022-09-26 09:06:48

『壹』 我利用粒子群算法工具箱求解最优值时陷入了局部最优该如何解决

粒子群陷入局部最优在所难免,建议可以采取加大权重因子的方法,或者一些改进的粒子群算法会提出对收敛的种群进行干扰,从而产生新的种群,另外可以采用量子粒子群算法,在局部最优问题上解决的还算可以

『贰』 粒子群算法 matlab 工具箱 在哪调用 还是没有现成的需要自己下载

http://www.mathworks.com/matlabcentral/fileexchange/7506

这个基复本上快算是官方的制了。粒子群算法工具。注册以后就可以下载了。

『叁』 粒子群优化算法(PSO)的matlab运行程序~~谢谢大家啦!

%不知道你具体的问题是什么,下面是一个最基本的pso算法解决函数极值问题,如果是一些大型的问题,需要对速度、惯性常数、和自适应变异做进一步优化,希望对你有帮助
function y = fun(x)
y=-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
%下面是主程序
%% 清空环境
clc
clear

%% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;

maxgen=200; % 进化次数
sizepop=20; %种群规模

Vmax=1;%速度限制
Vmin=-1;
popmax=5;%种群限制
popmin=-5;

%% 产生初始粒子和速度
for i=1:sizepop
%随机产生一个种群
pop(i,:)=5*rands(1,2); %初始种群
V(i,:)=rands(1,2); %初始化速度
%计算适应度
fitness(i)=fun(pop(i,:)); %染色体的适应度
end

%找最好的染色体
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %个体最佳
fitnessgbest=fitness; %个体最佳适应度值
fitnesszbest=bestfitness; %全局最佳适应度值

%% 迭代寻优
for i=1:maxgen

for j=1:sizepop

%速度更新
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;

%种群更新
pop(j,:)=pop(j,:)+0.5*V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;

%自适应变异(避免粒子群算法陷入局部最优)
if rand>0.8
k=ceil(2*rand);%ceil朝正无穷大方向取整
pop(j,k)=rand;
end

%适应度值
fitness(j)=fun(pop(j,:));

%个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end

%群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end

end
yy(i)=fitnesszbest;

end

%% 结果分析
plot(yy)
title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');

『肆』 粒子群优化算法的参数设置

从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解,粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误
PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置
粒子数: 一般取 20–40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200
粒子的长度: 这是由优化问题决定, 就是问题解的长度
粒子的范围: 由优化问题决定,每一维可是设定不同的范围
Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20
学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间
中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.
全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再用局部PSO进行搜索.
另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)。

『伍』 MATLAB中粒子群算法定义

你要自己写这个fun_PSOtrain_QNN的算法,神经网络工具箱里没有这个函数

『陆』 粒子群算法的参数设置

从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误
PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置
粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200
粒子的长度: 这是由优化问题决定, 就是问题解的长度
粒子的范围: 由优化问题决定,每一维可以设定不同的范围
Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20
学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间
中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.
全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再用局部PSO进行搜索. 代码来自2008年数学建模东北赛区B题, #includestdafx.h#include<math.h>#include<time.h>#include<iostream>#include<fstream>usingnamespacestd;intc1=2;//加速因子intc2=2;//加速因子doublew=1;//惯性权重doubleWmax=1;//最大惯性权重doubleWmin=0.6;//最小惯性权重intKmax=110;//迭代次数intGdsCnt;//物资总数intconstDim=10;//粒子维数intconstPNum=50;//粒子个数intGBIndex=0;//最优粒子索引doublea=0.6;//适应度调整因子doubleb=0.5;//适应度调整因子intXup[Dim];//粒子位置上界数组intXdown[Dim]=;//粒子位置下界数组intValue[Dim];//初始急需度数组intVmax[Dim];//最大速度数组classPARTICLE;//申明粒子节点voidCheck(PARTICLE&,int);//约束函数voidInput(ifstream&);//输入变量voidInitial();//初始化相关变量doubleGetFit(PARTICLE&);//计算适应度voidCalculateFit();//计算适应度voidBirdsFly();//粒子飞翔voidRun(ofstream&,int=2000);//运行函数classPARTICLE//微粒类{public:intX[Dim];//微粒的坐标数组intXBest[Dim];//微粒的最好位置数组intV[Dim];//粒子速度数组doubleFit;//微粒适合度doubleFitBest;//微粒最好位置适合度};PARTICLEParr[PNum];//粒子数组intmain()//主函数{ofstreamoutf(out.txt);ifstreaminf(data.txt);//关联输入文件inf>>GdsCnt;//输入物资总数Input(inf);Initial();Run(outf,100);system(pause);return0;}voidCheck(PARTICLE&p,intcount)//参数:p粒子对象,count物资数量{srand((unsigned)time(NULL));intsum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}while(sum>count){p.X[rand()%Dim]--;sum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}}voidInput(ifstream&inf)//以inf为对象输入数据{for(inti=0;i<Dim;i++)inf>>Xup;for(inti=0;i<Dim;i++)inf>>Value;}voidInitial()//初始化数据{GBIndex=0;srand((unsigned)time(NULL));//初始化随机函数发生器for(inti=0;i<Dim;i++)Vmax=(int)((Xup-Xdown)*0.035);for(inti=0;i{for(intj=0;j<Dim;j++){Parr.X[j]=(int)(rand()/(double)RAND_MAX*(Xup[j]-Xdown[j])-Xdown[j]+0.5);Parr.XBest[j]=Parr.X[j];Parr.V[j]=(int)(rand()/(double)RAND_MAX*(Vmax[j]-Vmax[j]/2));}Parr.Fit=GetFit(Parr);Parr.FitBest=Parr.Fit;if(Parr.Fit>Parr[GBIndex].Fit)GBIndex=i;}}doubleGetFit(PARTICLE&p)//计算对象适应度{doublesum=0;for(inti=0;i<Dim;i++)for(intj=1;j<=p.X;j++)sum+=(1-(j-1)*a/(Xup-b))*Value;returnsum;}voidCalculateFit()//计算数组内各粒子的适应度{for(inti=0;i{Parr.Fit=GetFit(Parr);}}voidBirdsFly()//粒子飞行寻找最优解{srand((unsigned)time(NULL));staticintk=10;w=Wmax-k*(Wmax-Wmin)/Kmax;k++;for(inti=0;i{for(intj=0;j<Dim;j++){Parr.V[j]=(int)(w*Parr.V[j]);Parr.V[j]+=(int)(c1*rand()/(double)RAND_MAX*(Parr.XBest[j]-Parr.X[j]);Parr.V[j]+=c2*rand()/(double)RAND_MAX*(Parr[GBIndex].XBest[j]-Parr.X[j]));}}Check(Parr,GdsCnt);for(intj=0;j<Dim;j++){Parr.X[j]+=Parr.V[j];Check(Parr,GdsCnt);}CalculateFit();for(inti=0;i{if(Parr.Fit>=Parr.FitBest){Parr.FitBest=Parr.Fit;for(intj=0;j<Dim;j++)Parr.XBest[j]=Parr.X[j];}}GBIndex=0;for(inti=0;i{if(Parr.FitBest>Parr[GBIndex].FitBest&&i!=GBIndex)GBIndex=i;}}voidRun(ofstream&outf,intnum)//令粒子以规定次数num飞行{for(inti=0;i<num;i++){BirdsFly();outf<<(i+1)<<ends<for(intj=0;j<Dim;j++)outf<outf<<endl;}cout<<Done!<<endl;}

『柒』 用matlab实现粒子群优化算法的可视化模拟,跪求源代码!!!!

给你一个地址,是Mathworks公司网站上的,全球Matlab使用者将自己的代码在这里分享,这是粒子群算法PSO工具箱地址

http://www.mathworks.com/matlabcentral/fileexchange/7506-particle-swarm-optimization-toolbox

看看使用说明,用一下demo就会了,在界面的右下方有平面粒子显示

在这里你还可以搜到很多源代码,希望对你有帮助

『捌』 matlab工具箱里moga怎么用

本来想找MOPSO多目标粒子群算法的matlab工具箱的,但是还没找到。只是有人看到用Matlab的MOGA工具箱。
也挺好的,至少可以直接拿过来做MOP多目标问题的求解。

NSGA-II is a very famous multi-objective optimization algorithm. I submitted an example previously and wanted to make this submission useful to others by creating it as a function. Even though this function is very specific to benchmark problems, with a little bit more modification this can be adopted for any multi-objective optimization.
The function is nsga_2(pop,gen). The input arguments for the function are population size and number of generations. For customization purposes the user is free to modify the objective function (function of several decision variables) by modifying an m file (evaluate_objective.m). Couple of sample objective functions is already described in the file. The user also has the freedom to define the decision space.
For more information on NSGA-II visit Kanpur Genetic Algorithm Laboratory at

『玖』 如何调用MATLAB遗传算法工具箱

1、打开MATLAB软件。

『拾』 粒子群算法工具箱怎么用

您好,看到您的问题将要被新提的问题从问题列表中挤出,问题无人回答过期后会被扣分并且悬赏分也将被没收!所以我给你提几条建议: 一,您可以选择在正确的分类下去提问或者到与您问题相关专业网站论坛里去看看,这样知道你问题答案的人才会多一些,回答的人也会多些。 二,您可以多认识一些知识丰富的网友,和曾经为你解答过问题的网友经常保持联系,遇到问题时可以直接向这些好友询问,他们会更加真诚热心为你寻找答案的。 三,该自己做的事还是必须由自己来做的,有的事还是须由自己的聪明才智来解决的,别人不可能代劳!只有自己做了才是真正属于自己的,别人只能给你提供指导和建议,最终靠自己。 您可以不采纳我的答案,但请你一定采纳我的建议哦! 虽然我的答案很可能不能解决你的问题,但一定可以使你更好地使用问问哦~~~

阅读全文

与粒子群算法工具箱怎么调用相关的资料

热点内容
壁挂式太阳能怎么换阀门 浏览:297
民恒机械的电话是多少 浏览:249
生产线步伐式输送装置设计开题 浏览:216
极光打字设备要多少钱 浏览:305
陌陌封禁设备是什么意思 浏览:244
动力头主轴轴承怎么装 浏览:611
手术机械有哪些 浏览:977
x射线的检测装置 浏览:679
美术画室器材有哪些 浏览:443
超声波频率什么波长什么 浏览:476
安装在线监测设备需多少钱 浏览:198
尼桑绿色eco仪表灯是什么意思 浏览:186
家里没有负重器材怎么搞负重 浏览:619
仪表台上电池的灯亮是什么原因 浏览:521
制冷74f是什么意思 浏览:930
机械挖填土方每平方多少钱 浏览:386
娱乐暖场设备出租怎么找客户 浏览:261
水暖消防阀门怎么样 浏览:340
等级保护测评工具箱 浏览:520
皓影仪表盘显示的是什么灯 浏览:589