导航:首页 > 五金知识 > emd工具箱黄锷

emd工具箱黄锷

发布时间:2022-09-18 13:32:31

㈠ EMD是什么缩写

经验模态分解(Empirical Mode Decomposition, 简称EMD))方法是由美国NASA的黄锷博士提出的一种信号分析方法.它依据数据自身的时间尺度特征来进行信号分解, 无须预先设定任何基函数。这一点与建立在先验性的谐波基函数和小波基函数上的傅里叶分解与小波分解方法具有本质性的差别。正是由于这样的特点, EMD 方法在理论上可以应用于任何类型的信号的分解, 因而在处理非平稳及非线性数据上, 具有非常明显的优势。所以, EMD方法一经提出就在不同的工程领域得到了迅速有效的应用, 例如用在海洋、大气、天体观测资料与地震记录分析、机械故障诊断、密频动力系统的阻尼识别以及大型土木工程结构的模态参数识别方面。 经验模态分解(EmpiilMdDmpiti简称EMD)法是美籍华人NdE,Hunag等人于1998年提出的,适合于分析非线性、非平稳信号序列,具有很高的信噪比。该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(IntrinsciMdoe Funcotin,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。经验模态分解法能使非平稳数据进行平稳化处理,然后进行希尔伯特变换获得时频谱图,得到有物理意义的频率。与短时傅立叶变换、小波分解等方法相比,这种方法是直观的、直接的、后验的和自适应的,因为基函数是由数据本身所分解得到。由于分解是基于信号序列时间尺度的局部特性,因此具有自适应性。
对数据信号进行MED分解就是为了获得本征模函数,因此,在介绍MED分析方法的具体过程之前,有必要先介绍EMD分解过程中所涉及的基本概念的定义:本征模函数,这是掌握EMD方法的基础。
本征模函数
在物理上,如果瞬时频率有意义,那么函数必须是对称的,局部均值为零,并且具有相同的过零点和极值点数目。在此基础上,NordneE.Hunag等人提出了本征模函数(IntrinsciMdoeFunctino,简称IMF)的概念。本征模函数任意一点的瞬时频率都是有意义的。Hunag等人认为任何信号都是由若干本征模函数组成,任何时候,一个信号都可以包含若干个本征模函数,如果本征模函数之间相互重叠,便形成复合信号。EMD分解的目的就是为了获取本征模函数,然后再对各本征模函数进行希尔伯特变换,得到希尔伯特谱。 Hunag认为,一个本征模函数必须满足以下两个条件: (1)l函数在整个时间范围内,局部极值点和过零点的数目必须相等,或最多相差一个; (2)在任意时刻点,局部最大值的包络(上包络线)和局部最小值的包络(下包络线) 平均必须为零。 第一个条件是很明显的,它与传统的平稳高斯信号的窄带要求类似。对于第二个条件,是一个新的概念,它把经典的全局性要求修改为局部性要求,使瞬时频率不再受不对称波形所形成的不必要的波动所影响。实际上,这个条件应为“数据的局部均值是零”。但是对于非平稳数据来说,计算局部均值涉及到“局部时间尺度”的概念,而这是很难定义的。因此,在第二个条件中使用了局部极大值包络和局部极小值包络的平均为零来代替,使信号的波形局部对称。Huang等人研究表明,在一般情况下,使用这种代替,瞬时频率还是符合所研究系统的物理意义。本征模函数表征了数据的内在的振动模式。由本征模函数的定义可知,由过零点所定义的本征模函数的每一个振动周期,只有一个振动模式,没有其他复杂的骑波;一个本征模函数没有约束为是一个窄带信号,并且可以是频率和幅值的调制,还可以是非稳态的;单由频率或单由幅值调制的信号也可成为本征模函数。
EMD方法的分解过程
由于大多数所有要分析的数据都不是本征模函数,在任意时间点上,数据可能包含多个波动模式,这就是简单的希尔伯特变换不能完全表征一般数据的频率特性的原因。于是需要对原数据进行EMD分解来获得本征模函数。 EMD分解方法是基于以下假设条件:(1)数据至少有两个极值,一个最大值和一个最小值;(2)数据的局部时域特性是由极值点间的时间尺度唯一确定;(3)如果数据没有极值点但有拐点,则可以通过对数据微分一次或多次求得极值,然后再通过积分来获得分解结果。这种方法的本质是通过数据的特征时间尺度来获得本征波动模式,然后分解数据。这种分解过程可以形象地称之为“筛选(shitfing)”过程。 分解过程是:找出原数据序列X()t所有的极大值点并用三次样条插值函数拟合形成原数据的上包络线;同样,找出所有的极小值点,并将所有的极小值点通过三次样条插值函数拟合形成数据的下包络线,上包络线和下包络线的均值记作ml,将原数据序列X(t)减去该平均包络ml,得到一个新的数据序列h,: X(t)-ml=hl 由原数据减去包络平均后的新数据,若还存在负的局部极大值和正的局部极小值,说明这还不是一个本征模函数,需要继续进行“筛选”。

㈡ 图解经验模态分解(EMD)

经验模态分解 (Empirical Mode Decomposition,EMD)是由美国工程师黄锷于1998年提出的一种信号的时频分析方法,这里的信号指的是时序信号。

常见的时序信号处理方法可以分为三类:时域、频域和时频域。时域分析特征包括均值、方差、峭度、峰峰值等;频域特征包括频率、能量等;而时频域分析有小波变换等。经验模态分解就属于一种时频分析方法。

黄锷认为所有的信号都是由有限个 本征模函数 (Intrinsic Mode Function, IMF )组成。IMF分量包含了原信号的不同时间尺度的局部特征信号。经验模态分解法能使非平稳数据进行平稳化处理,然后进行希尔伯特变换获得时频谱图,得到有物理意义的频率。 [1]

这和快速傅里叶变换(Fast Fourier Transform, FFT)有些像,FFT假设所有信号都是由很多周期性的正弦信号组成,这些信号有着不同的幅频和相位。使用FFT可以将时域信号转换到频域,但EMD分解后的信号还在时域,并且它没有假设信号是周期的且由很多基本的正弦信号组成。 [2]

但是EMD的使用存在一些限制条件:
⑴函数在整个时间范围内,局部极值点和过零点的数目必须相等,或最多相差一个;
⑵在任意时刻点,局部最大值的包络(上包络线)和局部最小值的包络(下包络线) 平均必须为零。

第一条什么意思呢,看看下面的图就明白了,它只能是下面这种情况:

假如我们有如下信号,它是由频率为1hz和4hz的正弦信号叠加而成:

我们发现得到的这个IMF同样满足EMD的两个条件,我们可以对该IMF从第一步开始计算第二个IMF,直到最终得到的信号是一个常数、单调或者只有一个极值为止。

㈢ emd是什么缩写

经验模态分解(Empirical Mode Decomposition, 简称EMD))方法是由美国NASA的黄锷博士提出的一种信号分析方法.它依据数据自身的时间尺度特征来进行信号分解, 无须预先设定任何基函数。

㈣ 黄锷1998年关于EMD的文献翻译

非线性和非平稳时间序列的经验模态分解和希尔伯特谱
望采纳!

阅读全文

与emd工具箱黄锷相关的资料

热点内容
steam令牌换设备了怎么办 浏览:246
新生测听力仪器怎么看结果 浏览:224
化学试验排水集气法的实验装置 浏览:156
家用水泵轴承位置漏水怎么回事 浏览:131
羊水镜设备多少钱一台 浏览:125
机械制图里型钢如何表示 浏览:19
测定空气中氧气含量实验装置如图所示 浏览:718
超声波换能器等级怎么分 浏览:800
3万轴承是什么意思 浏览:110
鑫旺五金制品厂 浏览:861
苏州四通阀制冷配件一般加多少 浏览:153
江北全套健身器材哪里有 浏览:106
水表阀门不开怎么办 浏览:109
花冠仪表盘怎么显示时速 浏览:106
洗砂机多少钱一台18沃力机械 浏览:489
超声波碎石用什么材料 浏览:607
组装实验室制取二氧化碳的简易装置的方法 浏览:165
怎么知道天然气充不了阀门关闭 浏览:902
公司卖旧设备挂什么科目 浏览:544
尚叶五金机电 浏览:59