Ⅰ 怎样使用Matlab工具箱函数
MATLAB的最优化工具箱复中提供了lsqcurvefit()函数,制可以解决最小二乘曲线拟合的问题,改函数的调用格式为:
[a,J]=lsqcurvefit(Fun,a0,x,y)
其中,Fun未原型函数的MATLAB表示,a0未最优化的初值,x,y为原始输入输出数据向量,调用该函数将可以返回待定系数向量a以及在此待定系数下的目标函数的值J.(详细可以输入 help lsqcurvefit)
具体做法是:
>>U1=inline('f(a,w)','a','w') %用a(i)分别代替六个未知数,i=1~6.
>>[xx,res]=lsqcurvefit(U1,[1 1 1 1 1 1],w,U); xx' % w和U是你试验得出来的数据向量。
结果应该会出现一个ans 向量(6维),分别就是你所要待定的系数a(i)了
Ⅱ matlab软件有哪些常用指令有哪些专用工具箱
matlab命令
一、常用对象操作:除了一般windows窗口的常用功能键外。
1、!dir 可以查看当前工作目录的文件。 !dir& 可以在dos状态下查看。
2、who 可以查看当前工作空间变量名, whos 可以查看变量名细节。
3、功能键:
功能键 快捷键 说明
方向上键 Ctrl+P 返回前一行输入
方向下键 Ctrl+N 返回下一行输入
方向左键 Ctrl+B 光标向后移一个字符
方向右键 Ctrl+F 光标向前移一个字符
Ctrl+方向右键 Ctrl+R 光标向右移一个字符
Ctrl+方向左键 Ctrl+L 光标向左移一个字符
home Ctrl+A 光标移到行首
End Ctrl+E 光标移到行尾
Esc Ctrl+U 清除一行
Del Ctrl+D 清除光标所在的字符
Backspace Ctrl+H 删除光标前一个字符
Ctrl+K 删除到行尾
Ctrl+C 中断正在执行的命令
4、clc可以命令窗口显示的内容,但并不清除工作空间。
二、函数及运算
1、运算符:
+:加, -:减, *:乘, /: 除, \:左除 ^: 幂,‘:复数的共轭转置, ():制定运算顺序。
2、常用函数表:
sin( ) 正弦(变量为弧度)
Cot( ) 余切(变量为弧度)
sind( ) 正弦(变量为度数)
Cotd( ) 余切(变量为度数)
asin( ) 反正弦(返回弧度)
acot( ) 反余切(返回弧度)
Asind( ) 反正弦(返回度数)
acotd( ) 反余切(返回度数)
cos( ) 余弦(变量为弧度)
exp( ) 指数
cosd( ) 余弦(变量为度数)
log( ) 对数
acos( ) 余正弦(返回弧度)
log10( ) 以10为底对数
acosd( ) 余正弦(返回度数)
sqrt( ) 开方
tan( ) 正切(变量为弧度)
realsqrt( ) 返回非负根
tand( ) 正切(变量为度数)
abs( ) 取绝对值
atan( ) 反正切(返回弧度)
angle( ) 返回复数的相位角
atand( ) 反正切(返回度数)
mod(x,y) 返回x/y的余数
sum( ) 向量元素求和
3、其余函数可以用help elfun和help specfun命令获得。
4、常用常数的值:
pi 3.1415926…….
realmin 最小浮点数,2^-1022
i 虚数单位
realmax 最大浮点数,(2-eps)2^1022
j 虚数单位
Inf 无限值
eps 浮点相对经度=2^-52
NaN 空值
三、数组和矩阵:
1、构造数组的方法:增量发和linspace(first,last,num)first和last为起始和终止数,num为需要的数组元素个数。
2、构造矩阵的方法:可以直接用[ ]来输入数组,也可以用以下提供的函数来生成矩阵。
ones( ) 创建一个所有元素都为1的矩阵,其中可以制定维数,1,2….个变量
zeros() 创建一个所有元素都为0的矩阵
eye() 创建对角元素为1,其他元素为0的矩阵
diag() 根据向量创建对角矩阵,即以向量的元素为对角元素
magic() 创建魔方矩阵
rand() 创建随机矩阵,服从均匀分布
randn() 创建随机矩阵,服从正态分布
randperm() 创建随机行向量
horcat C=[A,B],水平聚合矩阵,还可以用cat(1,A,B)
vercat C=[A;B],垂直聚合矩阵, 还可以用cat(2,A,B)
repmat(M,v,h) 将矩阵M在垂直方向上聚合v次,在水平方向上聚合h次
blkdiag(A,B) 以A,和B为块创建块对角矩阵
length 返回矩阵最长维的的长度
ndims 返回维数
numel 返回矩阵元素个数
size 返回每一维的长度,[rows,cols]=size(A)
reshape 重塑矩阵,reshape(A,2,6),将A变为2×6的矩阵,按列排列。
rot90 旋转矩阵90度,逆时针方向
fliplr 沿垂轴翻转矩阵
flipud 沿水平轴翻转矩阵
transpose 沿主对角线翻转矩阵
ctranspose 转置矩阵,也可用A’或A.’,这仅当矩阵为复数矩阵时才有区别
inv 矩阵的逆
det 矩阵的行列式值
trace 矩阵对角元素的和
norm 矩阵或矢量的范数,norm(a,1),norm(a,Inf)…….
normest 估计矩阵的最大范数矢量
chol 矩阵的cholesky分解
cholinc 不完全cholesky分解
lu LU分解
luinc 不完全LU分解
qr 正交分解
kron(A,B) A为m×n,B为p×q,则生成mp×nq的矩阵,A的每一个元素都会乘上B,并占据p×q大小的空间
rank 求出矩阵的刺
pinv 求伪逆矩阵
A^p 对A进行操作
A.^P 对A中的每一个元素进行操作
四、数值计算
1、线性方程组求解
(1)AX=B的解可以用X=A\B求。XA=B的解可以用X= A/B求。如果A是m×n的矩阵,当m=n时可以找到唯一解,m<n,不定解,解中至多有m个非零元素。如果m>n,超定系统,至少找到一组解。如果A是奇异的,且AX=B有解,可以用X=pinv(A)×B返回最小二乘解
(2)AX=b, A=L×U,[L,U]=lu(A), X=U\(L\b),即用LU分解求解。
(3)QR(正交)分解是将一矩阵表示为一正交矩阵和一上三角矩阵之积,A=Q×R[Q,R]=chol(A), X=Q\(U\b)
(4)cholesky分解类似。
2、特征值
D=eig(A)返回A的所有特征值组成的矩阵。[V,D]=eig(A),还返回特征向量矩阵。
3、A=U×S×UT,[U,S]=schur(A).其中S的对角线元素为A的特征值。
4、多项式Matlab里面的多项式是以向量来表示的,其具体操作函数如下:
conv 多项式的乘法
deconv 多项式的除法,【a,b】=deconv(s),返回商和余数
poly 求多项式的系数(由已知根求多项式的系数)
polyeig 求多项式的特征值
Polyfit(x,y,n) 多项式的曲线拟合,x,y为被拟合的向量,n为拟合多项式阶数。
polyder 求多项式的一阶导数,polyder(a,b)返回ab的导数
[a,b]=polyder(a,b)返回a/b的导数。
polyint 多项式的积分
polyval 求多项式的值
polyvalm 以矩阵为变量求多项式的值
resie 部分分式展开式
roots 求多项式的根(返回所有根组成的向量)
注:用ploy(A)求出矩阵的特征多项式,然后再求其根,即为矩阵的特征值。
5、插值常用的插值函数如下:
griddata 数据网格化合曲面拟合
Griddata3 三维数据网格化合超曲面拟合
interp1 一维插值(yi=interp1(x,y,xi,’method’)Method=nearest/linear/spline/pchip/cubic
Interp2 二维插值zi=interp1(x,y,z,xi,yi’method’),bilinear
Interp3 三维插值
interpft 用快速傅立叶变换进行一维插值,help fft。
mkpp 使用分段多项式
spline 三次样条插值
pchip 分段hermit插值
6、函数最值的求解
fminbnd(‘f’,x1,x2,optiset(,))求f在 x1和x2之间的最小值。Optiset选项可以有‘Display’+‘iter’/’off’/’final’,分别表示显示计算过程/不显示/只显示最后结果。fminsearch求多元函数的最小值。fzero(‘f’,x1)求一元函数的零点。X1为起始点。同样可以用上面的选项。
五、图像绘制:
1、基本绘图函数
plot 绘制二维线性图形和两个坐标轴
plot3 绘制三维线性图形和两个坐标轴
fplot 在制定区间绘制某函数的图像。fplot(‘f’,区域,线型,颜色)
loglog 绘制对数图形及两个坐标轴(两个坐标都为对数坐标)semilogx 绘制半对数坐标图形
semilogy 绘制半对数坐标图形
2、线型: 颜色 线型
y 黄色 . 圆点线 v 向下箭头
g 绿色 -. 组合 > 向右箭头
b 蓝色 + 点为加号形 < 向左箭头
m 红紫色 o 空心圆形 p 五角星形
c 蓝紫色 * 星号 h 六角星形
w 白色 . 实心小点 hold on 添加图形
r 红色 x 叉号形状 grid on 添加网格
k 黑色 s 方形 - 实线
d 菱形 -- 虚线 ^ 向上箭头
3、可以用subplot(3,3,1)表示将绘图区域分为三行三列,目前使用第一区域。此时如要画不同的图形在一个窗口里,需要hold on。
Ⅲ matlab 解答
Matlab常用工具箱MATLAB包括拥有数百个内部函数的主包和三十几种工具包。工具包又可以分为功能性工具包和学科工具包。功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能。学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类。
开放性使MATLAB广受用户欢迎。除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。
Matlab Main Toolbox——matlab主工具箱
Control System Toolbox——控制系统工具箱
Communication Toolbox——通讯工具箱
Financial Toolbox——财政金融工具箱
System Identification Toolbox——系统辨识工具箱
Fuzzy Logic Toolbox——模糊逻辑工具箱
Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱
Image Processing Toolbox——图象处理工具箱
LMI Control Toolbox——线性矩阵不等式工具箱
Model predictive Control Toolbox——模型预测控制工具箱
μ-Analysis and Synthesis Toolbox——μ分析工具箱
Neural Network Toolbox——神经网络工具箱
Optimization Toolbox——优化工具箱
Partial Differential Toolbox——偏微分方程工具箱
Robust Control Toolbox——鲁棒控制工具箱
Signal Processing Toolbox——信号处理工具箱
Spline Toolbox——样条工具箱
Statistics Toolbox——统计工具箱
Symbolic Math Toolbox——符号数学工具箱
Simulink Toolbox——动态仿真工具箱
Wavele Toolbox——小波工具箱 [编辑本段]常用函数Matlab内部常数[3]
eps:浮点相对精度
exp:自然对数的底数e
i 或 j:基本虚数单位
inf 或 Inf:无限大, 例如1/0
nan或NaN:非数值(Not a number),例如0/0
pi:圆周率 p(= 3.1415926...)
realmax:系统所能表示的最大数值
realmin:系统所能表示的最小数值
nargin: 函数的输入引数个数
nargout: 函数的输出引数个数
lasterr:存放最新的错误信息
lastwarn:存放最新的警告信息
MATLAB常用基本数学函数
abs(x):纯量的绝对值或向量的长度
angle(z):复数z的相角(Phase angle)
sqrt(x):开平方
real(z):复数z的实部
imag(z):复数z的虚部
conj(z):复数z的共轭复数
round(x):四舍五入至最近整数
fix(x):无论正负,舍去小数至最近整数
floor(x):地板函数,即舍去正小数至最近整数
ceil(x):天花板函数,即加入正小数至最近整数
rat(x):将实数x化为分数表示
rats(x):将实数x化为多项分数展开
sign(x):符号函数 (Signum function)。
当x<0时,sign(x)=-1;
当x=0时,sign(x)=0;
当x>0时,sign(x)=1。
rem(x,y):求x除以y的馀数
gcd(x,y):整数x和y的最大公因数
lcm(x,y):整数x和y的最小公倍数
exp(x) :自然指数
pow2(x):2的指数
log(x):以e为底的对数,即自然对数或
log2(x):以2为底的对数
log10(x):以10为底的对数
MATLAB常用三角函数
sin(x):正弦函数
cos(x):余弦函数
tan(x):正切函数
asin(x):反正弦函数
acos(x):反余弦函数
atan(x):反正切函数
atan2(x,y):四象限的反正切函数
sinh(x):双曲正弦函数
cosh(x):双曲余弦函数
tanh(x):双曲正切函数
asinh(x):反双曲正弦函数
acosh(x):反双曲余弦函数
atanh(x):反双曲正切函数
适用于向量的常用函数有
min(x): 向量x的元素的最小值
max(x): 向量x的元素的最大值
mean(x): 向量x的元素的平均值
median(x): 向量x的元素的中位数
std(x): 向量x的元素的标准差
diff(x): 向量x的相邻元素的差
sort(x): 对向量x的元素进行排序(Sorting)
length(x): 向量x的元素个数
norm(x): 向量x的欧氏(Euclidean)长度
sum(x): 向量x的元素总和
prod(x): 向量x的元素总乘积
cumsum(x): 向量x的累计元素总和
cumprod(x): 向量x的累计元素总乘积
dot(x, y): 向量x和y的内积
cross(x, y): 向量x和y的外积
MATLAB基本绘图函数
plot: x轴和y轴均为线性刻度(Linear scale)
loglog: x轴和y轴均为对数刻度(Logarithmic scale)
semilogx: x轴为对数刻度,y轴为线性刻度
semilogy: x轴为线性刻度,y轴为对数刻度
matlab插值和样条plot绘图函数的参数
字元 颜色 字元 图线型态
y 黄色 . 点
k 黑色 o 圆
w 白色 x x
b 蓝色 + +
g 绿色 * *
r 红色 - 实线
c 亮青色 : 点线
m 锰紫色 -. 点虚线
-- 虚线
注解
xlabel('Input Value'); % x轴注解
ylabel('Function Value'); % y轴注解
title('Two Trigonometric Functions'); % 图形标题
legend('y = sin(x)','y = cos(x)'); % 图形注解
grid on; % 显示格线
二维绘图函数
bar 长条图
errorbar 图形加上误差范围
fplot 较精确的函数图形
polar 极座标图
hist 累计图
rose 极座标累计图
stairs 阶梯图
stem 针状图
fill 实心图
feather 羽毛图
compass 罗盘图
quiver 向量场图[4]
Ⅳ 求MATLAB工具箱函数汇总
附录Ⅰ 工具箱函数汇总
Ⅰ.1 统计工具箱函数
表Ⅰ-1 概率密度函数
函数名 对应分布的概率密度函数
betapdf 贝塔分布的概率密度函数
binopdf 二项分布的概率密度函数
chi2pdf 卡方分布的概率密度函数
exppdf 指数分布的概率密度函数
fpdf f分布的概率密度函数
gampdf 伽玛分布的概率密度函数
geopdf 几何分布的概率密度函数
hygepdf 超几何分布的概率密度函数
normpdf 正态(高斯)分布的概率密度函数
lognpdf 对数正态分布的概率密度函数
nbinpdf 负二项分布的概率密度函数
ncfpdf 非中心f分布的概率密度函数
nctpdf 非中心t分布的概率密度函数
ncx2pdf 非中心卡方分布的概率密度函数
poisspdf 泊松分布的概率密度函数
raylpdf 雷利分布的概率密度函数
tpdf 学生氏t分布的概率密度函数
unidpdf 离散均匀分布的概率密度函数
unifpdf 连续均匀分布的概率密度函数
weibpdf 威布尔分布的概率密度函数
表Ⅰ-2 累加分布函数
函数名 对应分布的累加函数
betacdf 贝塔分布的累加函数
binocdf 二项分布的累加函数
chi2cdf 卡方分布的累加函数
expcdf 指数分布的累加函数
fcdf f分布的累加函数
gamcdf 伽玛分布的累加函数
geocdf 几何分布的累加函数
hygecdf 超几何分布的累加函数
logncdf 对数正态分布的累加函数
nbincdf 负二项分布的累加函数
ncfcdf 非中心f分布的累加函数
nctcdf 非中心t分布的累加函数
ncx2cdf 非中心卡方分布的累加函数
normcdf 正态(高斯)分布的累加函数
poisscdf 泊松分布的累加函数
raylcdf 雷利分布的累加函数
tcdf 学生氏t分布的累加函数
unidcdf 离散均匀分布的累加函数
unifcdf 连续均匀分布的累加函数
weibcdf 威布尔分布的累加函数
表Ⅰ-3 累加分布函数的逆函数
函数名 对应分布的累加分布函数逆函数
betainv 贝塔分布的累加分布函数逆函数
binoinv 二项分布的累加分布函数逆函数
chi2inv 卡方分布的累加分布函数逆函数
expinv 指数分布的累加分布函数逆函数
finv f分布的累加分布函数逆函数
gaminv 伽玛分布的累加分布函数逆函数
geoinv 几何分布的累加分布函数逆函数
hygeinv 超几何分布的累加分布函数逆函数
logninv 对数正态分布的累加分布函数逆函数
nbininv 负二项分布的累加分布函数逆函数
ncfinv 非中心f分布的累加分布函数逆函数
nctinv 非中心t分布的累加分布函数逆函数
ncx2inv 非中心卡方分布的累加分布函数逆函数
icdf
norminv 正态(高斯)分布的累加分布函数逆函数
poissinv 泊松分布的累加分布函数逆函数
raylinv 雷利分布的累加分布函数逆函数
tinv 学生氏t分布的累加分布函数逆函数
unidinv 离散均匀分布的累加分布函数逆函数
unifinv 连续均匀分布的累加分布函数逆函数
weibinv 威布尔分布的累加分布函数逆函数
表Ⅰ-4 随机数生成器函数
函 数 对应分布的随机数生成器
betarnd 贝塔分布的随机数生成器
binornd 二项分布的随机数生成器
chi2rnd 卡方分布的随机数生成器
exprnd 指数分布的随机数生成器
frnd f分布的随机数生成器
gamrnd 伽玛分布的随机数生成器
geornd 几何分布的随机数生成器
hygernd 超几何分布的随机数生成器
lognrnd 对数正态分布的随机数生成器
nbinrnd 负二项分布的随机数生成器
ncfrnd 非中心f分布的随机数生成器
nctrnd 非中心t分布的随机数生成器
ncx2rnd 非中心卡方分布的随机数生成器
normrnd 正态(高斯)分布的随机数生成器
poissrnd 泊松分布的随机数生成器
raylrnd 瑞利分布的随机数生成器
trnd 学生氏t分布的随机数生成器
unidrnd 离散均匀分布的随机数生成器
unifrnd 连续均匀分布的随机数生成器
weibrnd 威布尔分布的随机数生成器
表Ⅰ-5 分布函数的统计量函数
函数名 对应分布的统计量
betastat 贝塔分布函数的统计量
binostat 二项分布函数的统计量
chi2stat 卡方分布函数的统计量
expstat 指数分布函数的统计量
fstat f分布函数的统计量
gamstat 伽玛分布函数的统计量
geostat 几何分布函数的统计量
hygestat 超几何分布函数的统计量
lognstat 对数正态分布函数的统计量
nbinstat 负二项分布函数的统计量
ncfstat 非中心f分布函数的统计量
nctstat 非中心t分布函数的统计量
ncx2stat 非中心卡方分布函数的统计量
normstat 正态(高斯)分布函数的统计量
poisstat 泊松分布函数的统计量
续表
函数名 对应分布的统计量
raylstat 瑞利分布函数的统计量
tstat 学生氏t分布函数的统计量
unidstat 离散均匀分布函数的统计量
unifstat 连续均匀分布函数的统计量
weibstat 威布尔分布函数的统计量
表Ⅰ-6 参数估计函数
函 数 名 对应分布的参数估计
betafit 贝塔分布的参数估计
betalike 贝塔对数似然函数的参数估计
binofit 二项分布的参数估计
expfit 指数分布的参数估计
gamfit 伽玛分布的参数估计
gamlike 伽玛似然函数的参数估计
mle 极大似然估计的参数估计
normlike 正态对数似然函数的参数估计
normfit 正态分布的参数估计
poissfit 泊松分布的参数估计
unifit 均匀分布的参数估计
weibfit 威布尔分布的参数估计
weiblike 威布尔对数似然函数的参数估计
表Ⅰ-7 统计量描述函数
函 数 描 述
bootstrap 任何函数的自助统计量
corrcoef 相关系数
cov 协方差
crosstab 列联表
geomean 几何均值
grpstats 分组统计量
harmmean 调和均值
iqr 内四分极值
kurtosis 峰度
mad 中值绝对差
mean 均值
median 中值
moment 样本模量
nanmax 包含缺失值的样本的最大值
续表
函 数 描 述
Nanmean 包含缺失值的样本的均值
nanmedian 包含缺失值的样本的中值
nanmin 包含缺失值的样本的最小值
nanstd 包含缺失值的样本的标准差
nansum 包含缺失值的样本的和
prctile 百分位数
range 极值
skewness 偏度
std 标准差
tabulate 频数表
trimmean 截尾均值
var 方差
表Ⅰ-8 统计图形函数
函 数 描 述
boxplot 箱形图
cdfplot 指数累加分布函数图
errorbar 误差条图
fsurfht 函数的交互等值线图
gline 画线
gname 交互标注图中的点
gplotmatrix 散点图矩阵
gscatter 由第三个变量分组的两个变量的散点图
lsline 在散点图中添加最小二乘拟合线
normplot 正态概率图
pareto 帕累托图
qqplot Q-Q图
rcoplot 残差个案次序图
refcurve 参考多项式曲线
refline 参考线
surfht 数据网格的交互等值线图
weibplot 威布尔图
表Ⅰ-9 统计过程控制函数
函 数 描 述
capable 性能指标
capaplot 性能图
ewmaplot 指数加权移动平均图
续表
函 数 描 述
histfit 添加正态曲线的直方图
normspec 在指定的区间上绘正态密度
schart S图
xbarplot x条图
表Ⅰ-10 聚类分析函数
函 数 描 述
cluster 根据linkage函数的输出创建聚类
clusterdata 根据给定数据创建聚类
cophenet Cophenet相关系数
dendrogram 创建冰柱图
inconsistent 聚类树的不连续值
linkage 系统聚类信息
pdist 观测量之间的配对距离
squareform 距离平方矩阵
zscore Z分数
表Ⅰ-11 线性模型函数
函 数 描 述
anova1 单因子方差分析
anova2 双因子方差分析
anovan 多因子方差分析
aoctool 协方差分析交互工具
mmyvar 拟变量编码
friedman Friedman检验
glmfit 一般线性模型拟合
kruskalwallis Kruskalwallis检验
leverage 中心化杠杆值
lscov 已知协方差矩阵的最小二乘估计
manova1 单因素多元方差分析
manovacluster 多元聚类并用冰柱图表示
multcompare 多元比较
多项式评价及误差区间估计
polyfit 最小二乘多项式拟合
polyval 多项式函数的预测值
polyconf 残差个案次序图
regress 多元线性回归
regstats 回归统计量诊断
续表
函 数 描 述
Ridge 岭回归
rstool 多维响应面可视化
robustfit 稳健回归模型拟合
stepwise 逐步回归
x2fx 用于设计矩阵的因子设置矩阵
表Ⅰ-12 非线性回归函数
函 数 描 述
nlinfit 非线性最小二乘数据拟合(牛顿法)
nlintool 非线性模型拟合的交互式图形工具
nlparci 参数的置信区间
nlpredci 预测值的置信区间
nnls 非负最小二乘
表Ⅰ-13 试验设计函数
函 数 描 述
cordexch D-优化设计(列交换算法)
daugment 递增D-优化设计
dcovary 固定协方差的D-优化设计
ff2n 二水平完全析因设计
fracfact 二水平部分析因设计
fullfact 混合水平的完全析因设计
hadamard Hadamard矩阵(正交数组)
rowexch D-优化设计(行交换算法)
表Ⅰ-14 主成分分析函数
函 数 描 述
barttest Barttest检验
pcacov 源于协方差矩阵的主成分
pcares 源于主成分的方差
princomp 根据原始数据进行主成分分析
表Ⅰ-15 多元统计函数
函 数 描 述
classify 聚类分析
mahal 马氏距离
manova1 单因素多元方差分析
manovacluster 多元聚类分析
表Ⅰ-16 假设检验函数
函 数 描 述
ranksum 秩和检验
signrank 符号秩检验
signtest 符号检验
ttest 单样本t检验
ttest2 双样本t检验
ztest z检验
表Ⅰ-17 分布检验函数
函 数 描 述
jbtest 正态性的Jarque-Bera检验
kstest 单样本Kolmogorov-Smirnov检验
kstest2 双样本Kolmogorov-Smirnov检验
lillietest 正态性的Lilliefors检验
表Ⅰ-18 非参数函数
函 数 描 述
friedman Friedman检验
kruskalwallis Kruskalwallis检验
ranksum 秩和检验
signrank 符号秩检验
signtest 符号检验
表Ⅰ-19 文件输入输出函数
函 数 描 述
caseread 读取个案名
casewrite 写个案名到文件
tblread 以表格形式读数据
tblwrite 以表格形式写数据到文件
tdfread 从表格间隔形式的文件中读取文本或数值数据
表Ⅰ-20 演示函数
函 数 描 述
aoctool 协方差分析的交互式图形工具
disttool 探察概率分布函数的GUI工具
glmdemo 一般线性模型演示
randtool 随机数生成工具
polytool 多项式拟合工具
rsmdemo 响应拟合工具
robustdemo 稳健回归拟合工具
Ⅰ.2 优化工具箱函数
表Ⅰ-21 最小化函数表
函 数 描 述
fgoalattain 多目标达到问题
fminbnd 有边界的标量非线性最小化
fmincon 有约束的非线性最小化
fminimax 最大最小化
fminsearch, fminunc 无约束非线性最小化
fseminf 半无限问题
linprog 线性课题
quadprog 二次课题
表Ⅰ-22 方程求解函数表
函 数 描 述
\ 线性方程求解
fsolve 非线性方程求解
fzero 标量非线性方程求解
表Ⅰ-23 最小二乘函数表
函 数 描 述
\ 线性最小二乘
lsqlin 有约束线性最小二乘
lsqcurvefit 非线性曲线拟合
lsqnonlin 非线性最小二乘
lsqnonneg 非负线性最小二乘
表Ⅰ-24 实用函数表
函 数 描 述
optimset 设置参数
optimget 获取参数
表Ⅰ-25 大型方法的演示函数表
函 数 描 述
circustent 马戏团帐篷问题—二次课题
molecule 用无约束非线性最小化进行分子组成求解
optdeblur 用有边界线性最小二乘法进行图形处理
表Ⅰ-26 中型方法的演示函数表
函 数 描 述
bandemo 香蕉函数的最小化
dfildemo 过滤器设计的有限精度
goaldemo 目标达到举例
optdemo 演示过程菜单
tutdemo 教程演示
Ⅰ.3 样条工具箱函数
表Ⅰ-27 三次样条函数
函 数 描 述
csapi 插值生成三次样条函数
csape 生成给定约束条件下的三次样条函数
csaps 平滑生成三次样条函数
cscvn 生成一条内插参数的三次样条曲线
getcurve 动态生成三次样条曲线
表Ⅰ-28 分段多项式样条函数
函 数 描 述
pplst 显示关于生成分段多项式样条曲线的M文件
ppmak 生成分段多项式样条函数
ppual 计算在给定点处的分段多项式样条函数值
表Ⅰ-29 B样条函数
函 数 描 述
splst 显示生成B样条函数的M文件
spmak 生成B样条函数
spcrv 生成均匀划分的B样条函数
spapi 插值生成B样条函数
spap2 用最小二乘法拟合生成B样条函数
spaps 对生成的B样条曲线进行光滑处理
spcol 生成B样条函数的配置矩阵
表Ⅰ-30 有理样条函数
函 数 描 述
rpmak 生成有理样条函数
rsmak 生成有理样条函数
表Ⅰ-31 操作样条函数
函 数 描 述
fnval 计算在给定点处的样条函数值
fmbrk 返回样条函数的某一部分(如断点或系数等)
fncmb 对样条函数进行算术运算
fn2fm 把一种形式的样条函数转化成另一种形式的样条函数
fnder 求样条函数的微分(即求导数)
fndir 求样条函数的方向导数
fnint 求样条函数的积分
fnjmp 在间断点处求函数值
fnplt 画样条曲线图
fnrfn 在样条曲线中插入断点。
fntlr 生成tarylor系数或taylor多项式
表Ⅰ-32 样条曲线端点和节点处理函数
函 数 描 述
augknt 在已知节点数组中添加一个或多个节点
aveknt 求出节点数组元素的平均值
brk2knt 增加断点数组中元素的重次
knt2brk 从节点数组中求得节点及其重次
knt2mlt 从节点数组中求得节点及其重次
sorted 求出节点数组points的元素在节点数组meshpoints中属于第几个分量
aptknt 求出用于生成样条曲线的节点数组
表Ⅰ-33 样条曲线端点和节点处理函数
函 数 描 述
newknt 对分段多项式样条函数进行重分布
optknt 求出用于内插的最优节点数组
chbpnt 求出用于生成样条曲线的合适节点数组
表Ⅰ-34 解线性方程组的函数
函 数 描 述
slvblk 解对角占优的线性方程组
bkbrk 描述分块对角矩阵的详细情况
表Ⅰ-35 样条GUI函数
函 数 描 述
bspligui 在节点处生成B样条曲线
splinetool 用一系列方法生成各种样条曲线
Ⅰ.4 偏微分方程数值解工具箱函数
表Ⅰ-36 偏微分方程求解算法函数
函 数 描 述
adaptmesh 生成自适应网格并求解PDE问题
assema 组合面积的整体贡献
assemb 组合边界条件的贡献
assempde 组合刚度矩阵和PDE问题的右端项
hyperbolic 求解双曲线PDE问题
parabolic 求解抛物线型PDE问题
pdeeig 求解特征值PDE问题
pdenonlin 求解非线性PDE问题
poisolv 在矩形网格上对泊松方程进行快速求解
表Ⅰ-37 用户界面算法函数
函 数 描 述
pdecirc 绘圆
pdeellip 绘椭圆
pdemdlcv 将PDE工具箱1.0模型的M文件转换为PDE工具箱1.0.2版本的格式
pdepoly 绘多边形
pderect 绘矩形
pdetool PDE工具箱图形用户集成界面(GUI)
表Ⅰ-38 几何算法函数
函 数 描 述
csgchk 核对几何描述矩阵的有效性
csgdel 删除最小子域之间的界线
decsg 将建设性实体几何模型分解为最小子域
initmesh 创建初始三角形网格
jigglemesh 微调三角形网格的内部点
pdearcl 在参数表示和圆弧长度之间进行内插
poimesh 在矩形几何图形上生成规则网格
refinemesh 加密一个三角形网格
wbound 写边界条件指定文件
wgeom 写几何指定函数
表Ⅰ-39 绘图函数
函 数 描 述
pdecont 绘等值线图
pdegplot 绘制PDE几何图
pdemesh 绘PDE三角形网格
pdeplot 一般PDE工具箱绘图函数
pdesurf 绘三维表面图
表Ⅰ-40 实用函数
函 数 描 述
Dst idst 离散化sin转换
pdeadgsc 使用相对容限临界值选择三角形
pdeadworst 选择相对于最坏值的三角形
pdecgrad PDE解的变动
pdeent 与给定三角形集合相邻的三角形的指数
pdegrad PDE解的梯度
pdeintrp 从节点数据至三角形中点数据进行内插
pdejmps 对于自适应网格进行误差估计
pdeprtni 从三角形中点数据向节点数据进行内插
pdesde 子域集合中点的指数
pdesdp 子域集合边缘的指数
pdesdt 子域集合三角形的指数
pdesmech 计算结构力学张量函数
pdetrg 三角形几何数据
pdetriq 三角型质量度量
续表
函 数 描 述
Poiasma 用于泊松方程快速求解器的边界点矩阵
poicalc 矩形网格上泊松方程的快速求解器
poiindex 经过规范排序的矩形网格的点的指数
sptarn 求解广义稀疏特征值问题
tri2grid 从PDE三角形网格到矩形网格进行内插
表Ⅰ-41 自定义算法函数
函 数 描 述
pdebound 边界条件M文件
pdegeom 几何模型M文件
表Ⅰ-42 演示函数
函 数 描 述
pdedemo1 单位圆盘上泊松方程的精确解
pdedemo2 求解Helmholtz方程,研究反射波
pdedemo3 求解最小表面问题
pdedemo4 用子域分解求解PDE问题
pdedemo5 求抛物线型问题(热传导方程)
pdedemo6 求双曲线型PDE问题(波动方程)
pdedemo7 点源的自适应求解
pdedemo8 在矩形网格上求解泊松方程
Ⅳ MATLAB工具箱是怎样的
MATLAB附带了很多工具箱(Toolbox),而且每次发布新版本时,工具箱几乎都要增加。按回F1键打开MATLAB的“Help”,答在窗口左边显示了MATLAB所有的工具箱。
一般来说,每个工具箱针对一个具体的问题,如图像处理工具箱(ImageProcessingToolbox)专门针对数字图像处理问题,偏微分方程工具箱()是偏微分方程(组)求解函数的集合。一个工具箱中包含若干函数。实际上,工具箱也是一个函数库,在功能方面与MATLAB主体中的数值计算和数据可视化部分相同。但有一点区别:主体部分的核心函数都是内置函数,是用C语言编写并编译过的;而工具箱中的函数都是基于MATLAB的二次开发,即用MATLAB语言写的.m文件。用Editor打开这些文件,就可以看到源代码。
MATLAB工具箱一般具有较深厚的专业背景。本篇基本不涉及工具箱的内容。在下篇中,将从实例出发,在用到某工具箱时,对该工具箱进行简单介绍。
Ⅵ MATLAB有哪些画图的函数
1、plot()
最通用的绘图函数,可以接受一个向量或两个向量作为坐标输入,但是两个向量作为输入时这两个向量必须有相同的长度。
2、ezplot()
快捷绘图指令,可以大大简化编程过程,仅需要通过字符串的形式输入待求解表达式(甚至隐函数方程),即可得到结果。
(6)matlab工具箱有哪些函数扩展阅读
在同时绘制多条曲线时,如果没有指定曲线属性,plot按顺序循环使用当前坐标系中ColorOrder和LineStyleOrder两个属性。
默认情况,MATLAB在每次调用plot函数时将ColorOrder和LineStyleOrder自动重置为DefaultAxesColorOrder和DefaultAxesLineStyleOrder。
使用hold all命令可以阻止调用plot函数时自动重置ColorOrder和LineStyleOrder属性,而是循环使用。注意,hold on只是使多次绘制的图形叠加(相当于NextPlot),但不能阻止属性重置。
另外,可以通过下面四个属性设置标识符的颜色和大小“
LineWidth”指定线宽;
MarkerEdgeColor“指定标识符的边缘颜色;
MarkerFaceColor”指定标识符填充颜色;
MarkerSize“指定标识符的大小。
注意:上面四个属性是针对当前坐标系中所有曲线的。
Ⅶ 关于matlab的SVM工具箱的几个函数
help用法:
在命令输入窗口输入: help+空格+函数名
把上边的函数都help一下就行了
trainlssvm训练用
simlssvm测试用
Ⅷ 关于matlab的SVM工具箱的几个函数
能不用自带函数不,给你个最小二乘支持向量机的自编代码
clear all;
clc;
N=35; %样本个数
NN1=4; %预测样本数
%********************随机选择初始训练样本及确定预测样本*******************************
x=[];
y=[];
index=randperm(N); %随机排序N个序列
index=sort(index);
gama=23.411; %正则化参数
deita=0.0698; %核参数值
%thita=; %核参数值
%*********构造感知机核函数*************************************
%for i=1:N
% x1=x(:,index(i));
% for j=1:N
% x2=x(:,index(j));
% K(i,j)=tanh(deita*(x1'*x2)+thita);
% end
%end
%*********构造径向基核函数**************************************
for i=1:N
x1=x(:,index(i));
for j=1:N
x2=x(:,index(j));
x12=x1-x2;
K(i,j)=exp(-(x12'*x12)/2/(deita*deita));
end
end
%*********构造多项式核函数****************************************
%for i=1:N
% x1=x(:,index(i));
% for j=1:N
% x2=x(:,index(j));
% K(i,j)=(1+x1'*x2)^(deita);
% end
%end
%*********构造核矩阵************************************
for i=1:N-NN1
for j=1:N-NN1
omeiga1(i,j)=K(i,j);
end
end
omeiga2=omeiga1';
omeiga=omeiga2+(1/gama)*eye(N-NN1);
A12=ones(1,N-NN1);
A21=A12';
A=[0 A12;A21 omeiga];
%**************************************
for i=1:N-NN1
B21(i,:)=y(index(i));
end
B=[0;B21];
%********LS-SVM模型的解******************************
C=A\B;
%******
b=C(1); %模型参数
for i=1:N-NN1
aipha(i)=C(i+1); %模型参数,行向量
end
%*******************************************
for i=1:N %预测模型
aifx(i)=b+(aipha)*K(1:N-NN1,i);
end
%*******************************************
aifx
index
Ⅸ 数学建模常用到的matlab函数有哪些
sort (排序)
xlsread ( exl文件导入)
load (txt 文件,mat文件等导入)
实际上,常用的函数也是很有针对性的,我还真不知道 你要问什么
Ⅹ matlab中怎么查看工具箱中的函数
MATLAB的最优化工具箱中提供了lsqcurvefit()函数,可以解决最小二乘曲线拟合的问题,改函数的调用格式为:
[a,J]=lsqcurvefit(Fun,a0,x,y)
其中,Fun未原型函数的MATLAB表示,a0未最优化的初值,x,y为原始输入输出数据向量,调用该函数将可以返回待定系数向量a以及在此待定系数下的目标函数的值J.(详细可以输入 help lsqcurvefit)
具体做法是:
>>U1=inline('f(a,w)','a','w') %用a(i)分别代替六个未知数,i=1~6.
>>[xx,res]=lsqcurvefit(U1,[1 1 1 1 1 1],w,U); xx' % w和U是你试验得出来的数据向量。
结果应该会出现一个ans 向量(6维),分别就是你所要待定的系数a(i)了