Ⅰ SPSS中回归分析结果解释,不懂怎么看
首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回归系数的t检验的结果,绝对值越大,sig就越小,sig代表t检验的显著性,在统计学上,sig<0.05一般被认为是系数检验显著,显著的意思就是你的回归系数的绝对值显著大于0,表明自变量可以有效预测因变量的变异,做出这个结论你有5%的可能会犯错误,即有95%的把握结论正确。
回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<0.05,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告
然后看系数表,看标准化的回归系数是否显著,每个自变量都有一个对应的回归系数以及显著性检验
最后看模型汇总那个表,R方叫做决定系数,他是自变量可以解释的变异量占因变量总变异量的比例,代表回归方程对因变量的解释程度,报告的时候报告调整后的R方,这个值是针对自变量的增多会不断增强预测力的一个矫正(因为即使没什么用的自变量,只要多增几个,R方也会变大,调整后的R方是对较多自变量的惩罚),R可以不用管,标准化的情况下R也是自变量和因变量的相关
希望对您有用
Ⅱ matlab 画图 多元线性回归分析
Matlab中统计工具箱用命令regress实现多元线性回归,用的方法是最小二乘法,基本用法是:
b=regress(Y,X)
Y,X是因变量和自变量,b为回归系数的估计值。
当然,也可以让结果更详细,这个你可以自己查看帮助文档 doc regress
这里使用:
[b,bint,r,rint,stats]=regress(Y,X)
其中,bint为回归系数的置信区间,r,rint为残差及其置信区间,stats为计算回归模型的统计量。
所以,设房屋销售均价为Y,其余四个变量分别为X1,X2,X3,X4
则代码如下:
clc
clear
x=[];
Y=[];
X=[ones(length(x),1),x];
[b,bint,r,rint,stats]=regress(Y,X,0.05)
X,Y的数据你填进去就可以了。
Ⅲ 如何使用matlab拟合工具箱
1.打开CFTOOL工具箱。
在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。也可以在命令窗口中直接输入”cftool”,打开工具箱。
2.输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。 例如在命令行里输入下列数据: x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33]; y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278; 0.041803; 0.038026; 0.038128; 0.088196];
3.数据的选取。
打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。关闭Data对话框。此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.曲线拟合(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。在Fit Editor里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中刚才建立的x-y数据组,然后在Type of fit选框中选取拟合或回归类型,各个类型的拟合或回归相应的分别是: Custom Equations 用户自定义函数 Expotential e指数函数 Fourier 傅立叶函数,含有三角函数 Gaussian 正态分布函数,高斯函数 Interpolant 插值函数,含有线性函数,移动平均等类型的拟合 Polynomial 多项式函数 Power 幂函数 Rational 有理函数(不太清楚,没有怎么用过) Smooth Spline (光滑插值或者光滑拟合,不太清楚) Sum of sin functions正弦函数类
在这个Type of fit选框中选择好合适的类型,并选好合适的函数形式。于是点击Apply按钮,就开始进行拟合或者回归了。此时在Curve Fitting Tool窗口上就会出现一个拟合的曲线。这就是所要的结果。 在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply按钮,就可以看见拟合得到的正弦曲线。
Ⅳ 如何用EXCEL做回归分析
在日常数据分析工作当中,回归分析是应用十分广泛的一种数据分析方法,按照涉及自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
回归分析的实施步骤:
1)根据预测目标,确定自变量和因变量
2)建立回归预测模型
3)进行相关分析
4)检验回归预测模型,计算预测误差
5)计算并确定预测值
我们接下来讲解在Excel2007中如何进行回归分析?
一、案例场景
为了研究某产品中两种成分A与B之间的关系,现在想建立不同成分A情况下对应成分B的拟合曲线以供后期进行预测分析。测定了下列一组数据:
Ⅳ matlab曲线拟合工具箱能做多元非线性回归分析吗只能写程序吗求方法!!
目前,Matlab还不能对多元非线性回归分析。只能用nlinfit函数,lsqcurvefit函数来拟合。其方回法:
x=[。。。];y=[。。。];
fun=inline('a(1)+a(2).*exp(x)','a','x');
a=lsqcurvefit(fun,[a01 a02],x,y)
或
a= nlinfit(x,y,fun,[a01 a02])
[a01 a02] 初值答
Ⅵ 用excel怎么做数据分析回归
方法/步骤
打开Excel.2010,首先输入课本例题7.1的全部数据,2012年各地区农村居民家庭人均纯收入与人均消费支出,
做题之前,我们先为Excel.2010注入回归分析的相关内容,点击【文件】,选择左下角的【选项】,出来如图,选择【加载项】,点击【转到】。
进入加载宏,选择【分析工具库】,点击确定。
进入【数据】,就会发现最右面出现了【数据分析】这一项。
点击数据分析之后选择【回归】,确定,这样就为Excel.2010导入了数据分析的功能,进行回归分析了,选择X、Y值的区域,其他不变的,点击确定。
5
最后,就是我们需要的内容,根据数据进行分析,可以得出样本的回归函数:
Yi=1004.539839+0.614539172925018Xi【具体看做的题目】
Ⅶ 数据分析工具有哪些,有什么区别
Smartbi Excel分析就是面向Excel用户的数据分析工具,它结合了Excel的优点,解决了Excel的问题,真正做到赋能企业一线业务用户,让人人都是自助分析师,促进企业的全民数字化运营。Ⅷ SPC软件的统计分析工具箱包括哪些方面
抄SPC.NET(赛微统计制程控袭制与分析系统)的统计分析工具箱包括:回归分析(Regression Analysis)、方差分析(ANOVA)、相关性分析(Correlations)、假设检验(Hypothesis Test)、参数估计(Parameters Estimate)等。
Ⅸ matlab如何调用统计工具箱
调用统计特工具箱的做法:
①打开matlab;
②点击左下角Start;
③进入Toolbox工具箱;
④选择Statistics;
Ⅹ MATLAB里的Toolboxes怎么使用急求高手指点!!!
MATLAB工具箱介绍
有三十多个工具箱大致可分为两类:功能型工具箱和领域型工具箱。
功能型工具箱主要用来扩充MATLAB的符号计算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,能用于多种学科。
领域型工具箱是专业性很强的。如图像处理工具箱(Image Processing Toolbox)、控制工具箱(Control Toolbox)、信号处理工具箱(Signal Processing Toolbox)等。下面,将MATLAB工具箱内所包含的主要内容做简要介绍:
1) 图像处理工具箱(Image Processing Toolbox)。
* 二维滤波器设计和滤波
* 图像恢复增强
* 色彩、集合及形态操作
* 二维变换
* 图像分析和统计
可由结构图直接生成可应用的C语言源代码。
2)控制系统工具箱(Control System Toolbox)。
鲁连续系统设计和离散系统设计
* 状态空间和传递函数
* 模型转换
* 频域响应:Bode图、Nyquist图、Nichols图
* 时域响应:冲击响应、阶跃响应、斜波响应等
* 根轨迹、极点配置、LQG
3)财政金融工具箱(FinancialTooLbox)。
* 成本、利润分析,市场灵敏度分析
* 业务量分析及优化
* 偏差分析
* 资金流量估算
* 财务报表
4)频率域系统辨识工具箱(Frequency Domain System ldentification Toolbox
* 辨识具有未知延迟的连续和离散系统
* 计算幅值/相位、零点/极点的置信区间
* 设计周期激励信号、最小峰值、最优能量诺等
5)模糊逻辑工具箱(Fuzzy Logic Toolbox)。
* 友好的交互设计界面
* 自适应神经—模糊学习、聚类以及Sugeno推理
* 支持SIMULINK动态仿真
* 可生成C语言源代码用于实时应用
(6)高阶谱分析工具箱(Higher—Order SpectralAnalysis Toolbox
* 高阶谱估计
* 信号中非线性特征的检测和刻画
* 延时估计
* 幅值和相位重构
* 阵列信号处理
* 谐波重构
(7) 通讯工具箱(Communication Toolbox)。
令提供100多个函数和150多个SIMULINK模块用于通讯系统的仿真和分析
——信号编码
——调制解调
——滤波器和均衡器设计
——通道模型
——同步
(8)线性矩阵不等式控制工具箱(LMI Control Toolbox)。
* LMI的基本用途
* 基于GUI的LMI编辑器
* LMI问题的有效解法
* LMI问题解决方案
(9)模型预测控制工具箱(ModelPredictive Control Toolbox
* 建模、辨识及验证
* 支持MISO模型和MIMO模型
* 阶跃响应和状态空间模型
(10)u分析与综合工具箱(u-Analysis and Synthesis Toolbox)
* u分析与综合
* H2和H无穷大最优综合
* 模型降阶
* 连续和离散系统
* u分析与综合理论
(11)神经网络工具箱(Neursl Network Toolbox)。
* BP,Hopfield,Kohonen、自组织、径向基函数等网络
* 竞争、线性、Sigmoidal等传递函数
* 前馈、递归等网络结构
* 性能分析及应用
(12)优化工具箱(Optimization Toolbox)。
* 线性规划和二次规划
* 求函数的最大值和最小位
* 多目标优化
* 约束条件下的优化
* 非线性方程求解
(13)偏微分方程工具箱(Partial DifferentialEquation Toolbox)。
* 二维偏微分方程的图形处理
* 几何表示
* 自适应曲面绘制,
* 有限元方法
(14)鲁棒控制工具箱(Robust Control Toolbox)。
* LQG/LTR最优综合
* H2和H无穷大最优综合
* 奇异值模型降阶
* 谱分解和建模
(15)信号处理工具箱(signal Processing Toolbox)
* 数字和模拟滤波器设计、应用及仿真
* 谱分析和估计
* FFT,DCT等变换
* 参数化模型
(16)样条工具箱(SPline Toolbox)。
* 分段多项式和B样条
* 样条的构造
* 曲线拟合及平滑
* 函数微分、积分
(17)统计工具箱(Statistics Toolbox)。
* 概率分布和随机数生成
* 多变量分析
* 回归分析
* 主元分析
* 假设检验
(18)符号数学工具箱(Symbolic Math Toolbox)。
* 符号表达式和符号矩阵的创建
* 符号微积分、线性代数、方程求解
* 因式分解、展开和简化
* 符号函数的二维图形
* 图形化函数计算器
(19)系统辨识工具箱(SystEm Identification Toolbox)
* 状态空间和传递函数模型
* 模型验证
* MA,AR,ARMA等
* 基于模型的信号处理
* 谱分析
(20)小波工具箱(Wavelet Toolbox)。
* 基于小波的分析和综合
* 图形界面和命令行接口
* 连续和离散小波变换及小波包
* 一维、二维小波
* 自适应去噪和压缩