㈠ 用matlab软件怎么进行小波分析
它自己有小波工具箱,wav开头的,里面有很多相关函数,一般直接用就是了。初学建议看帮助里面小波工具箱的demo,可能更好理解。
㈡ MATLAB中小波工具箱的问题
第一层,第二层,第三层
小波分解是这样的
原始信号
低频 高频 1 层
低频 高频 2 层
低频 高频 3 层
小波包的话就是对高频也再分
㈢ matlab中多小波工具箱怎么设置
没有说清,什么怎么设置?小波工具箱里面的函数都有参数,直接设置参数就可以用了。
㈣ 关于MATLAB小波工具箱
wfilter = 'haar';%选择小波基抄
[CA,CH,CV,CD] = dwt2(x,wfilter, 'per');%小波变换袭
CA = (CA>=T1) .* CA;%对4个自带分别阈值处理
CH = (CH>=T2) .* CH;
CV = (CV>=T3) .* CV;
CD = (CD>=T4) .* CD;
result = idwt2(CA, CH, CV, CD, wfilter, 'per');%反变换重构图像。
㈤ matlab2014工具箱在哪
在绘图右边的应用程序,就是以前的工具箱。
㈥ 如何保存matlab小波包工具箱的图像
摘要 您好,我这边正在为您查询,请稍等片刻,我这边马上回复您~
㈦ matlab小波分析工具箱的使用方法 求详细过程
将原始数据文件夹到装有matlab的电脑
打开matlab软件,进入软件主界面
在软件的左下方找到start按钮,点击选择toolbox,然后选择wavelet
进入wavemenu界面,选择一维小波中的wavelet1-D并进入
5.将数据文件(.Mat格式)托到matlab软件主界面的workspace
6.在wavemenu主界面中选择file-load signal或者import from workspace—import signal
7.选择要处理的信号,界面出现loaded信号,这就是没有去噪前的原
始信号
8.右上角选择用于小波分析的小波基以及分解层数并点击analyse开始分析
9.分析后在左边栏目中出现s,a*,d*,其中s为原信号,a*为近似信号,d*为细节信号
10.然后点击denoise去噪
11.阈值方法常用的有4种fixed(固定阈值),rigorsure,heusure,minmax根据需要选择,一般情况下rigorsure方式去噪效果较好
12.oft(软阈值),hard(硬阈值)一般选择软阈值去噪后的信号较为平滑
13.在噪声结构中选择unscaled white noise,因为在工程应用中的噪声一般不仅仅含有白噪声
14.在噪声结构下面的数值不要随意改,这是系统默认的去噪幅度
15.点击denoise开始正式去噪
16.在此窗口下点击file-save denoised singal,保存输出去噪后的信号
17.去噪结束
18.去噪结束后,把去噪后信号(.mat格式)拖至matlab主界面的workspace中,与原信号一起打包,以便以后计算统计量
19.Matlab编程计算相关统计量以及特征量
20.得出统计量和特征量后结束
㈧ 为什么matlab wavelet 工具箱没有morlet小波
orlet是连续小波分析方法,matlab2014里小波工具箱有区分。
我用的是matlab2014A,同时我用服务器上的2012A也没有这种小波基。
㈨ MATLAB里小波工具箱的功能怎样用函数程序实现呢
a1.a2,d2,d1是ca1,ca2,cd1,cd2这些小波系数的重构。ca1,ca2,cd1,cd2是小波系数,它们的数据点数随分解层次的增大而减少专,这就难以与原始信号对属比分析,通常会经过重构变为与原始信号个数相同的a1.a2,d2,d1,从物理意义上讲,只有a1.a2,d2,d1才是有实际量纲的信号,ca1,ca2,cd1,cd2是没有量纲和物理意义的。
上面的语句是提取小波系数的,而工具箱的图是用重构的数据的,你可以使用waverec函数实现工具箱的功能。
对于DWT,小波分解对被分解信号的点数是没有要求的,因为在DWT之前对原始信号是要经过拓展的,也就是说,DWT时的信号数据已经不是原始信号的点数了。对于SWT,matlab在这方面所写的函数没下啥功夫,比较敷衍,这时小波分解被分解信号的点数必须是2的整数次幂。
㈩ matlab中的小波工具箱怎么用,希望能详细介绍
将原始数据文件夹到装有matlab的电脑
打开matlab软件,进入软件主界面
在软件的左下方找到start按钮,点击选择toolbox,然后选择wavelet
进入wavemenu界面,选择一维小波中的wavelet1-D并进入
5.将数据文件(.Mat格式)托到matlab软件主界面的workspace
6.在wavemenu主界面中选择file-load signal或者import from workspace—import signal
7.选择要处理的信号,界面出现loaded信号,这就是没有去噪前的原
始信号
8.右上角选择用于小波分析的小波基以及分解层数并点击analyse开始分析
9.分析后在左边栏目中出现s,a*,d*,其中s为原信号,a*为近似信号,d*为细节信号
10.然后点击denoise去噪
11.阈值方法常用的有4种fixed(固定阈值),rigorsure,heusure,minmax根据需要选择,一般情况下rigorsure方式去噪效果较好
12.oft(软阈值),hard(硬阈值)一般选择软阈值去噪后的信号较为平滑
13.在噪声结构中选择unscaled white noise,因为在工程应用中的噪声一般不仅仅含有白噪声
14.在噪声结构下面的数值不要随意改,这是系统默认的去噪幅度
15.点击denoise开始正式去噪
16.在此窗口下点击file-save denoised singal,保存输出去噪后的信号
17.去噪结束
18.去噪结束后,把去噪后信号(.mat格式)拖至matlab主界面的workspace中,与原信号一起打包,以便以后计算统计量
19.Matlab编程计算相关统计量以及特征量
20.得出统计量和特征量后结束