导航:首页 > 五金知识 > 搜索算法工具箱

搜索算法工具箱

发布时间:2022-08-29 15:08:40

⑴ 遗传算法工具箱的具体使用

matlab遗传算法工具箱函数及实例讲解 核心函数:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

⑵ 为什么我应用matlab自带的遗传算法工具箱求函数最小值,,每次运行结果都不一样

一样才怪!遗传算法是一种带有随机性的搜索型的求解全局最优解的方法。随机性就是在优化过程中变量的取值是随机变化的,但是这种变化是朝向全局最优的方向随机变化。但是当种群数量足够大,而且进化代数足够多的时候,最优解是具有稳定性的,虽然每次都不一样,但是最优解的变化一般不会很大。

myfun没有给出,这个是ga函数求解的部分设置,通过改变populationsize和generations可以达到获得稳定最优解的目的。变异概率和杂交概率也有一定的影响,在局部收敛的情况下可以增大变异概率等来避免局部最优。

⑶ 用VB 6.0做一个工具箱的步骤

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术之一。

1.遗传算法与自然选择

达尔文的自然选择学说是一种被人们广泛接受的生物进化学说。这种学说认为,生物要生存下去,就必须进行生存斗争。生存斗争包括种内斗争、种间斗争以及生物跟无机环境之间的斗争三个方面。在生存斗争中,具有有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产生后代的机会也少的多。因此,凡是在生存斗争中获胜的个体都是对环境适应性比较强的。达尔文把这种在生存斗争中适者生存,不适者淘汰的过程叫做自然选择。它表明,遗传和变异是决定生物进化的内在因素。自然界中的多种生物之所以能够适应环境而得以生存进化,是和遗传和变异生命现象分不开的。正是生物的这种遗传特性,使生物界的物种能够保持相对的稳定;而生物的变异特性,使生物个体产生新的性状,以致于形成新的物种,推动了生物的进化和发展。

遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。 作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。

2.遗传算法的基本步骤

我们习惯上把Holland1975年提出的GA称为传统的GA。它的主要步骤如下:

编码:GA在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合便构成了不同的点。

初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体, N个个体构成了一个群体。GA以这N个串结构数据作为初始点开始迭代。

适应性值评估检测:适应性函数表明个体或解的优劣性。不同的问题,适应性函数的定义方式也不同。

选择:选择的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代为下一代繁殖子孙。遗传算法通过选择过程体现这一思想,进行选择的原则是适应性强的个体为下一代贡献一个或多个后代的概率大。选择实现了达尔文的适者生存原则。

交换:交换操作是遗传算法中最主要的遗传操作。通过交换操作可以得到新一代个体,新个体组合了其父辈个体的特性。交换体现了信息交换的思想。

变异:变异首先在群体中随机选择一个个体,对于选中的个体以一定的概率随机地改变串结构数据中某个串的值。同生物界一样,GA中变异发生的概率很低,通常取值在0.001~0.01之间。变异为新个体的产生提供了机会。

GA的计算过程为:

选择编码方式

产生初始群体

计算初始群体的适应性值

如果不满足条件 {
选择
交换
变异
计算新一代群体的适应性值
}

3.遗传算法的特点

遗传算法作为一种快捷、简便、容错性强的算法,在各类结构对象的优化过程中显示

出明显的优势。与传统的搜索方法相比,遗传算法具有如下特点:

搜索过程不直接作用在变量上,而是在参数集进行了编码的个体。此编码操作,
使得遗传算法可直接对结构对象(集合、序列、矩阵、树、图、链和表)进行操作。

搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降
低了陷入局部最优解的可能性,并易于并行化。

采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则。
对搜索空间没有任何特殊要求(如连通性、凸性等),只利用适应性信息,不需要
导数等其它辅助信息,适应范围更广。

4.遗传算法的研究历史与现状

遗传算法研究的兴起是在80年代末和90年代初期,但它的历史起源可追溯至60年代

初期。早期的研究大多以对自然系统的计算机模拟为主。如Fraser的模拟研究,他提出了和现在的遗传算法十分相似的概念和思想。Holland和DeJong的创造性研究成果改变了早期遗传算法研究的无目标性和理论指导的缺乏。其中,Holland于1975年出版的著名著作<<自然系统和人工系统的适配>>系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极为重要的模式理论。这一理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。

同年,DeJong的重要论文<<遗传自适应系统到的行为分析>>将Holland的模式理论与他的计算实验结合起来,并提出了诸如代沟等新的遗传操作技术。可以认为,DeJong所作的研究工作是遗传算法发展过程中的一个里程碑。

进入80年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用领域也不断扩大。目前遗传算法所涉及的主要领域有自动控制、规划设计、组合优化、图象处理、信号处理、人工生命等。可见,遗传算法的应用研究已从初期的组合优化求解拓展到了许多更新。更工程化的应用方面。

⑷ 如何在matlab中添加遗传算法工具箱

将遗传算法文件夹到matlab下的toolbox中,运行matlab,在file中更新工具箱

⑸ 怎样将模拟退火算法工具箱添加到matlab中

其实原理很简单,就是一种概率性的搜索算法,只是一个小程序回,所以可以自己编答写,我目前就是用自己编写的。目前我认为几个关键点就是退火温降一定要缓慢,也就是迭代次数尽量多,所以在温度变化函数里面的参数要设置可能。另外,同温条件下可以多寻找一些新生个体。最后,发挥matlab的并行运算功能,也就是对退火算法进行群体优化,这样,相对于单一个体来讲,具有更强大的全局搜索能力。你可以看下陈华根发表的《模拟退火算法机理研究》,希望对你有所帮助。纯属个人经验,不足之处欢迎指正

⑹ 请教遗传算法工具箱中设定搜索范围

每次提问都没人回复呢 不过还好 过几天自己就解决了 查看原帖>>

⑺ 遗传算法工具箱的使用方法

去GOOGLE,BAIDU上去搜索、

⑻ matlab遗传算法工具箱在哪

直接在命令窗口里边输入gatool就行了,用遗传算法还可以使用ga函数,具体使用格式可以在help系统里看ga,你还可以按照如下步骤打开遗传算法工具箱:1,打开MATLAB,2点击左下方的START按钮 3,点toolboxes,打开后选择Genetic Algorithm and Direct Search 然后就可以进入gatool了,然后就会弹出ga工具箱(注:我的版本是7.7的,不同版本可能不同)

⑼ 怎么调用matlab遗传算法工具箱啊

工具箱要安装到指定的路径,好久没有用了,具体我也记不住了,你可以
网络搜索专
一下。属路径安装不对就会出问题。如果安装对了,你用help命令显示一下函数.
函数的m文件不用运行,直接调用就可以。eval=-eval;
以后eval变为负的了,而ga函数要求参数必须是正的。

⑽ 求雷英杰《Matlab遗传算法工具箱及应用》电子书,清晰版的(付电子版源码),万分感谢

《MATLAB遗传算法工来具箱及应用》
作者:雷英自杰等编著 页数:261 出版日期:2005

简介:全书共分9章,系统介绍了MATLAB遗传算法和直接搜索工具箱的功能特点、编程原理及使用方法。包括遗传算法的基础知识、MATLAB遗传算法工具箱及其使用方法等内容。

阅读全文

与搜索算法工具箱相关的资料

热点内容
水满可自动关闭的装置 浏览:282
10KV防雷接地装置定期检测 浏览:324
机械停表测量的物理量是什么 浏览:124
两个三角形给水是什么阀门 浏览:774
机械硬盘装上后如何做 浏览:46
东莞市永克五金制品有限公司怎么样 浏览:586
江玲皮卡车仪表盘左上角是什么表 浏览:485
流体压强和流速关系的实验装置 浏览:494
如何抓轴承 浏览:471
口罩超声波机怎么调 浏览:998
导缆装置的位置与作用 浏览:796
阀门的芯体里是什么材料 浏览:216
餐厅纸巾生产设备需要多少钱一套 浏览:987
电冰箱制冷系数测量实验装置 浏览:472
电动车前工具箱怎么换 浏览:431
11年捷达车空调不制冷怎么回事 浏览:878
用cad画五金制品难吗 浏览:799
广东直销美容仪器怎么样 浏览:95
人防密闭阀门套什么定额 浏览:537
老款思域后轮轴承怎么拆 浏览:40