㈠ LSTM神经网络输入输出究竟是怎样的
每个时刻的输入都是一个向量,它的长度是输入层神经元的个数。在你的问题中,这个向量就是embedding向量。它的长度与时间步的个数(即句子的长度)没有关系。
每个时刻的输出是一个概率分布向量,其中最大值的下标决定了输出哪个词。
㈡ lstm神经网络输入输出究竟是怎样的
LSTM的三个门输出数字和向量的情况都有。门(input,forget,output)输出的维度和cell状态的维度一致即可。也就是说三个门的输出分别控制被控制向量(cell input,cell(t-1),cell(t))中的元素。举个例子,如果cell状态的维度是1,那么被控制向量(cell input,cell(t-1),cell(t))的维度也都是1,那么三个门的输出都是0-1之间的数字(选用sigmoid激活函数);如果cell状态的维度是N,那么被控制向量(cell input,cell(t-1),cell(t))的维度也分别都是N,那么三个门的输出都是0-1之间的向量(选用sigmoid激活函数),且门输出向量的维度都是N。
㈢ matlab2018a中有lstm工具箱吗
matlab工具箱就是省去了matlab编程的过程。
他就是把程序转换成界面,便于初学者的学习,操作。里面有各种工具箱,比如小波工具箱,神经网络工具箱,粒子算法优化工具箱,仿真模拟工具箱等等。
sum=xlsread('name.xls');%name为文件名,将excel数据储存在sum矩阵中。sum1=sum(:,1);%取出sum第一列数据为sum1,很多时候会用到取出某一行;如果是取出列,类似的。
服务支持:
Simulink®: Simulation Performance Advisor,链接库模块的封装,以及通过逻辑表达式控制有效变量。
Simulink: 除 LEGO® MINDSTORMS® NXT、Arino®、Pandaboard 和 Beagleboard 外,还为 Raspberry Pi™ 和 Gumstix® Overo® 硬件提供了内置支持。
SimRF™: 针对快速仿真和模型加载时间的电路包络求解器。
SimMechanics™: 发布了用于从 CAD 和其他系统导入模型的 XML 架构。
Simulink Design Verifier™: 数组超出边界检查。
㈣ 使用MATLAB里面的LSTM,Invalid training data. Responses must be a vector of categorical responses
responses 变量需要定义为categorical类型。比如你的变量是a,你加一句:a=categorical(a);
㈤ matlab神经网络工具箱具体怎么用
为了看懂师兄的文章中使用的方法,研究了一下神经网络
昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,网络知道里倒是有一个,可以运行的,先贴着做标本
% 生成训练样本集
clear all;
clc;
P=[110 0.807 240 0.2 15 1 18 2 1.5;
110 2.865 240 0.1 15 2 12 1 2;
110 2.59 240 0.1 12 4 24 1 1.5;
220 0.6 240 0.3 12 3 18 2 1;
220 3 240 0.3 25 3 21 1 1.5;
110 1.562 240 0.3 15 3 18 1 1.5;
110 0.547 240 0.3 15 1 9 2 1.5];
0 1.318 300 0.1 15 2 18 1 2];
T=[54248 162787 168380 314797;
28614 63958 69637 82898;
86002 402710 644415 328084;
230802 445102 362823 335913;
60257 127892 76753 73541;
34615 93532 80762 110049;
56783 172907 164548 144040];
@907 117437 120368 130179];
m=max(max(P));
n=max(max(T));
P=P'/m;
T=T'/n;
%-------------------------------------------------------------------------%
pr(1:9,1)=0; %输入矢量的取值范围矩阵
pr(1:9,2)=1;
bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm');
%建立BP神经网络, 12个隐层神经元,4个输出神经元
%tranferFcn属性 'logsig' 隐层采用Sigmoid传输函数
%tranferFcn属性 'logsig' 输出层采用Sigmoid传输函数
%trainFcn属性 'traingdx' 自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数
%learn属性 'learngdm' 附加动量因子的梯度下降学习函数
net.trainParam.epochs=1000;%允许最大训练步数2000步
net.trainParam.goal=0.001; %训练目标最小误差0.001
net.trainParam.show=10; %每间隔100步显示一次训练结果
net.trainParam.lr=0.05; %学习速率0.05
bpnet=train(bpnet,P,T);
%-------------------------------------------------------------------------
p=[110 1.318 300 0.1 15 2 18 1 2];
p=p'/m;
r=sim(bpnet,p);
R=r'*n;
display(R);
运行的结果是出现这样的界面
点击performance,training state,以及regression分别出现下面的界面
再搜索,发现可以通过神经网络工具箱来创建神经网络,比较友好的GUI界面,在输入命令里面输入nntool,就可以开始了。
点击import之后就出现下面的具体的设置神经网络参数的对话界面,
这是输入输出数据的对话窗
首先是训练数据的输入
然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等
点击view,可以看到这是神经网络的可视化直观表达
创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果
下面三个图形则是点击performance,training state以及regression而出现的
下面就是simulate,输入的数据是用来检验这个网络的数据,output改一个名字,这样就把输出数据和误差都存放起来了
在主界面上点击export就能将得到的out结果输入到matlab中并查看
下图就是输出的两个outputs结果
还在继续挖掘,to be continue……
㈥ matlab的神经网络工具箱怎么用
1.神经网络
神经网络是单个并行处理元素的集合,我们从生物学神经系统得到启发。在自然界,网络功能主要由神经节决定,我们可以通过改变连接点的权重来训练神经网络完成特定的功能。
一般的神经网络都是可调节的,或者说可训练的,这样一个特定的输入便可得到要求的输出。如下图所示。这里,网络根据输出和目标的比较而调整,直到网络输出和目标匹配。作为典型,许多输入/目标对应的方法已被用在有监督模式中来训练神经网络。
神经网络已经在各个领域中应用,以实现各种复杂的功能。这些领域包括:模式识别、鉴定、分类、语音、翻译和控制系统。
如今神经网络能够用来解决常规计算腿四岩越饩龅奈侍狻N颐侵饕ü飧龉ぞ呦淅唇⑹痉兜纳窬缦低常⒂τ玫焦こ獭⒔鹑诤推渌导氏钅恐腥ァ?BR>一般普遍使用有监督训练方法,但是也能够通过无监督的训练方法或者直接设计得到其他的神经网络。无监督网络可以被应用在数据组的辨别上。一些线形网络和Hopfield网络是直接设计的。总的来说,有各种各样的设计和学习方法来增强用户的选择。
神经网络领域已经有50年的历史了,但是实际的应用却是在最近15年里,如今神经网络仍快速发展着。因此,它显然不同与控制系统和最优化系统领域,它们的术语、数学理论和设计过程都已牢固的建立和应用了好多年。我们没有把神经网络工具箱仅看作一个能正常运行的建好的处理轮廓。我们宁愿希望它能成为一个有用的工业、教育和研究工具,一个能够帮助用户找到什么能够做什么不能做的工具,一个能够帮助发展和拓宽神经网络领域的工具。因为这个领域和它的材料是如此新,这个工具箱将给我们解释处理过程,讲述怎样运用它们,并且举例说明它们的成功和失败。我们相信要成功和满意的使用这个工具箱,对范例和它们的应用的理解是很重要的,并且如果没有这些说明那么用户的埋怨和质询就会把我们淹没。所以如果我们包括了大量的说明性材料,请保持耐心。我们希望这些材料能对你有帮助。
这个章节在开始使用神经网络工具箱时包括了一些注释,它也描述了新的图形用户接口和新的运算法则和体系结构,并且它解释了工具箱为了使用模块化网络对象描述而增强的机动性。最后这一章给出了一个神经网络实际应用的列表并增加了一个新的文本--神经网络设计。这本书介绍了神经网络的理论和它们的设计和应用,并给出了相当可观的MATLAB和神经网络工具箱的使用。
2.准备工作
基本章节
第一章是神经网络的基本介绍,第二章包括了由工具箱指定的有关网络结构和符号的基本材料以及建立神经网络的一些基本函数,例如new、init、adapt和train。第三章以反向传播网络为例讲解了反向传播网络的原理和应用的基本过程。
帮助和安装
神经网络工具箱包含在nnet目录中,键入help nnet可得到帮助主题。
工具箱包含了许多示例。每一个
㈦ lstm工具箱2016matlab有吗
有的。
Matlab2016b官方版是一款出自MathWorks公司之手的科学计算工具,Matlab2016b最新版功能强劲,能够帮助用户轻松进行工程计算、控制设计、信号处理与通讯、图像处理、信号检测等操作,MathworksMatlab2016b操作简便,可实现数值分析、数值和符号计算、工程与科学绘图等。
此版本增加了新的功能以简化MATLAB中的大数据处理过程,还包括Simulink的其他新功能、一个新的工具箱RiskManagementToolbox以及其它83款产品的更新和问题修复。除此之外,Matlab2016b还增加一个时间表数据容器,用于索引和同步带时间戳的表格数据,增加了字符串数组,用于进行有效的进行文本数据的操作、比较和存储,以及增加其它用于数据预处理的新功能。
㈧ 循环神经网络的反向传播
可以采用MATLAB软件中的神经网络工具箱来实现BP神经网络算法。BP神经网络的学习过程由前向计算过程、误差计算和误差反向传播过程组成。双含隐层BP神经网络的MATLAB程序,由输入部分、计算部分、输出部分组成,其中输入部分包括网络参数与训练样本数据的输入、初始化权系、求输入输出模式各分量的平均值及标准差并作相应数据预处理、读入测试集样本数据并作相应数据预处理;计算部分包括正向计算、反向传播、计算各层权矩阵的增量、自适应和动量项修改各层权矩阵;输出部分包括显示网络最终状态及计算值与期望值之间的相对误差、输出测试集相应结果、显示训练,测试误差曲线。
㈨ matlab中如何调用更改lstm的权重
方法/步骤
在电脑上打开Matlab软件,并将要进行预测的Excel中数据保存到Matlab工作路径下
总结:
1.打开Matlab,将要处理的数据保存到工作路径下
2.接着新建一个脚本文件
3.在脚本文件中输入程序,读取数据、建立LSTM网络,并训练网络
4.编写好程序以后点击“保存”,接着点击“运行”捷克语在figure页面看导预测结果