导航:首页 > 五金知识 > 小波神经网络matlab工具箱

小波神经网络matlab工具箱

发布时间:2022-06-29 10:36:05

❶ MATLAB神经网络的目录

第1章 BP神经网络的数据分类——语音特征信号分类1
本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章 BP神经网络的非线性系统建模——非线性函数拟合11
本章拟合的非线性函数为y=x21+x22。
第3章 遗传算法优化BP神经网络——非线性函数拟合21
根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优36
对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模45
BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章 PID神经元网络解耦控制算法——多变量系统控制54
根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章 RBF网络的回归——非线性函数回归的实现65
本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章 GRNN的数据预测——基于广义回归神经网络的货运量预测73
根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章 离散Hopfield神经网络的联想记忆——数字识别81
根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章 离散Hopfield神经网络的分类——高校科研能力评价90
某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章 连续Hopfield神经网络的优化——旅行商问题优化计算100
现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章 SVM的数据分类预测——意大利葡萄酒种类识别112
将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章 SVM的参数优化——如何更好的提升分类器的性能122
本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章 SVM的回归预测分析——上证指数开盘指数预测133
对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章 SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141
在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章 自组织竞争网络在模式分类中的应用——患者癌症发病预测153
本案例中给出了一个含有60个个体基因表达水平的样本。每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类), 中间的20个样本是正常人的基因表达信息样本, 余下的20个样本是待检测的样本(未知它们是否正常)。以下将设法找出癌症与正常样本在基因表达水平上的区别,建立竞争网络模型去预测待检测样本是癌症还是正常样本。
第17章SOM神经网络的数据分类——柴油机故障诊断159
本案例中给出了一个含有8个故障样本的数据集。每个故障样本中有8个特征,分别是前面提及过的:最大压力(P1)、次最大压力(P2)、波形幅度(P3)、上升沿宽度(P4)、波形宽度(P5)、最大余波的宽度(P6)、波形的面积(P7)、起喷压力(P8),使用SOM网络进行故障诊断。
第18章Elman神经网络的数据预测——电力负荷预测模型研究170
根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。
第19章 概率神经网络的分类预测——基于PNN的变压器故障诊断176
本案例在对油中溶解气体分析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。
第20章 神经网络变量筛选——基于BP的神经网络变量筛选183
本例将结合BP神经网络应用平均影响值(MIV,Mean Impact Value)方法来说明如何使用神经网络来筛选变量,找到对结果有较大影响的输入项,继而实现使用神经网络进行变量筛选。
第21章 LVQ神经网络的分类——乳腺肿瘤诊断188
威斯康星大学医学院经过多年的收集和整理,建立了一个乳腺肿瘤病灶组织的细胞核显微图像数据库。数据库中包含了细胞核图像的10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度),这些特征与肿瘤的性质有密切的关系。因此,需要建立一个确定的模型来描述数据库中各个量化特征与肿瘤性质的关系,从而可以根据细胞核显微图像的量化特征诊断乳腺肿瘤是良性还是恶性。
第22章 LVQ神经网络的预测——人脸朝向识别198
现采集到一组人脸朝向不同角度时的图像,图像来自不同的10个人,每人5幅图像,人脸的朝向分别为:左方、左前方、前方、右前方和右方。试创建一个LVQ神经网络,对任意给出的人脸图像进行朝向预测和识别。
第23章 小波神经网络的时间序列预测——短时交通流量预测208
根据小波神经网络原理在MATLAB环境中编程实现基于小波神经网络的短时交通流量预测。
第24章 模糊神经网络的预测算法——嘉陵江水质评价218
根据模糊神经网络原理,在MATLAB中编程实现基于模糊神经网络的水质评价算法。
第25章 广义神经网络的聚类算法——网络入侵聚类229
模糊聚类虽然能够对数据聚类挖掘,但是由于网络入侵特征数据维数较多,不同入侵类别间的数据差别较小,不少入侵模式不能被准确分类。本案例采用结合模糊聚类和广义神经网络回归的聚类算法对入侵数据进行分类。
第26章 粒子群优化算法的寻优算法——非线性函数极值寻优236
根据PSO算法原理,在MATLAB中编程实现基于PSO算法的函数极值寻优算法。
第27章 遗传算法优化计算——建模自变量降维243
在第21章中,建立模型时选用的每个样本(即病例)数据包括10个量化特征(细胞核半径、质地、周长、面积、光滑性、紧密度、凹陷度、凹陷点数、对称度、断裂度)的平均值、10个量化特征的标准差和10个量化特征的最坏值(各特征的3个最大数据的平均值)共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立的,因此,为了缩短建模时间、提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。
第28章 基于灰色神经网络的预测算法研究——订单需求预测258
根据灰色神经网络原理,在MATLAB中编程实现基于灰色神经网络的订单需求预测。
第29章 基于Kohonen网络的聚类算法——网络入侵聚类268
根据Kohonen网络原理,在MATLAB软件中编程实现基于Kohonen网络的网络入侵分类算法。
第30章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类277
为了便于使用MATLAB编程的新用户,快速地利用神经网络解决实际问题,MATLAB提供了一个基于神经网络工具箱的图形用户界面。考虑到图形用户界面带来的方便和神经网络在数据拟合、模式识别、聚类各个领域的应用,MATLAB R2009a提供了三种神经网络拟合工具箱(拟合工具箱/模式识别工具箱/聚类工具箱)。

❷ MATLAB 有哪些好用的第三方工具箱

太多了。matlab工具箱就是省去了matlab编程的过程,他就是把程序转换成界面,便于初学者的学习,操作。里面有各种工具箱,比如小波工具箱,神经网络工具箱,粒子算法优化工具箱,仿真模拟工具箱等等

❸ 请问,MATLAB小波神经网络的工具箱是哪个啊谁有小波神经网络的实际案例吗

http://www.codeforge.cn/read/131847/Readme.doc__html

❹ 用matlab中工具箱进行小波去噪步骤

matlab读取excel文件比较方便,建议你把数据放到xls文件中保存,然后在matlab中用xlsread这个函数读取出来。版

读取出的数据应该是一权个一维数组了,用plot画出图的话,就是常见的曲线。

然后做小波分解:选用你觉得合适的小波基,例如haar,然后用这个小波基做小波分解,再把高频部分去掉,然后用低频部分还原,就得到了去噪后的信号。

其实你这个问题估计也可以用神经网络或者其它曲线拟合一类手段来解决。具体的情况要根据数据特征来判断。

以上。
专业路过的老狼

❺ matlab工具箱有哪些

matlab工具箱就是省去了matlab编程的过程,他就是把程序转换成界面,便于初学者的学习,操作。
里面有各种工具箱,比如小波工具箱,神经网络工具箱,粒子算法优化工具箱,仿真模拟工具箱等等!

❻ matlab怎么打开神经网络工具箱

1单击Apps,在搜索框中输入neu,下方出现了所有神经网络工具箱。neural net fitting 是我们要使用的神经网络拟合工具箱。

2
在下界面中点击next

3
单击load example data set,得到我们需要的测试数据。

4
单击import

5
单击next

6
单击next

7
数字“10”表示有10个隐含层。单击next。

8
单击train,开始训练。

9
训练过程跳出的小窗口。

10
训练结果。其中MSE表示均方差,R 表示相关系数。单击next。

11
这里可以调整神经网络,也可以再次训练。单击next。

12
在这里,可以保存结果。如果不需要,直接finish。

❼ 如何使用matlab中的工具箱

如果是系统自带的,你可以直接用,如果是外部的或者是自编的你需要先把文件夹拷贝到tools文件夹下,再设置路径。
Matlab常用工具箱介绍(英汉对照)
Matlab Main Toolbox——matlab主工具箱
Control System Toolbox——控制系统工具箱
Communication Toolbox——通讯工具箱
Financial Toolbox——财政金融工具箱
System Identification Toolbox——系统辨识工具箱
Fuzzy Logic Toolbox——模糊逻辑工具箱
Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱
Image Processing Toolbox——图象处理工具箱
LMI Control Toolbox——线性矩阵不等式工具箱
Model predictive Control Toolbox——模型预测控制工具箱
μ-Analysis and Synthesis Toolbox——μ分析工具箱
Neural Network Toolbox——神经网络工具箱
Optimization Toolbox——优化工具箱
Partial Differential Toolbox——偏微分方程工具箱
Robust Control Toolbox——鲁棒控制工具箱
Signal Processing Toolbox——信号处理工具箱
Spline Toolbox——样条工具箱
Statistics Toolbox——统计工具箱
Symbolic Math Toolbox——符号数学工具箱
Simulink Toolbox——动态仿真工具箱
System Identification Toolbox——系统辨识工具箱
Wavele Toolbox——小波工具箱

例如:控制系统工具箱包含如下功能:
连续系统设计和离散系统设计
状态空间和传递函数以及模型转换
时域响应(脉冲响应、阶跃响应、斜坡响应)
频域响应(Bode图、Nyquist图)
根轨迹、极点配置

较为常见的matlab控制箱有:

控制类:

控制系统工具箱(control systems toolbox)
系统识别工具箱(system identification toolbox)
鲁棒控制工具箱(robust control toolbox)
神经网络工具箱(neural network toolbox)
频域系统识别工具箱(frequency domain system identification toolbox)
模型预测控制工具箱(model predictive control toolbox)
多变量频率设计工具箱(multivariable frequency design toolbox)

信号处理类:
信号处理工具箱(signal processing toolbox)
滤波器设计工具箱(filter design toolbox)
通信工具箱(communication toolbox)
小波分析工具箱(wavelet toolbox)
高阶谱分析工具箱(higher order spectral analysis toolbox)

其它工具箱:
统计工具箱(statistics toolbox)
数学符号工具箱(symbolic math toolbox)
定点工具箱(fixed-point toolbox)
射频工具箱(RF toolbox)

1990年,MathWorks软件公司为Matlab提供了新的控制系统模型化图形输入与仿真工具,并命名为Simulab,使得仿真软件进入了模型化图形组态阶段,1992年正式命名为Simulink,即simu(仿真)和link(连接)。matlab7.0里的simulink为6.0版本,matlab6.5里的simulink为5.0版本。

MATLAB的SIMULINK子库是一个建模、分析各种物理和数学系统的软件,它用框图表示系统的各个环节,用带方向的连线表示各环节的输入输出关系。
启动SIMULINK十分容易,只需在MATLAB的命令窗口键入“SIMULINK”命令,此时出现一个SIMULINK窗口,包含七个模型库,分别是信号源库、输出库、离散系统库、线性系统库、非线性系统库及扩展系统库。
1.信号源库
包括阶跃信号、正弦波、白噪声、时钟、常值、文件、信号发生器等各种信号源,其中信号发生器可产生正弦波、方波、锯齿波、随机信号等波形。
2.输出库
包括示波器仿真窗口、MATLAB工作区、文件等形式的输出。
3.离散系统库
包括五种标准模式:延迟,零-极点,滤波器,离散传递函数,离散状态空间。
4.线性系统库
提供七种标准模式:加法器、比例环节、积分环节、微分环节、传递函数、零-极点、状态空间。
5.非线性系统库
提供十三种常用标准模式:绝对值、乘法、函数、回环特性、死区特性、斜率、继电器特性、饱和特性、开关特性等。
6.系统连接库包括输入、输出、多路转换等模块,用于连接其他模块。
7.系统扩展库
考虑到系统的复杂性,SIMULINK另提供十二种类型的扩展系统库,每一种又有多种模型供选择。
使用时只要从各子库中取出模型,定义好模型参数,将各模型连接起来,然后设置系统参数,如仿真时间、仿真步长、计算方法等。SIMULINK提供了Euler、RungeKutta、Gear、Adams及专用于线性系统的LinSim算法,用户根据仿真要求选择适当的算法。

当然,不同版本的Matlab/Simulink内容有所不同。

另外,Simulink还提供了诸如航空航天、CDMA、DSP、机械、电力系统等专业模块库,给快速建模提供了很大的便利。

❽ 求助神经网络MATLAB程序

你用的工具箱函数了吗?用工具箱函数可以简单点,工具箱调用是nntool;在command windows使用,先用import,将数据分别放入 inputs和targets(导入数据)。然后按NEW NETWORK选择结构,选择Feedforward Backprop,确定Number of Layers(网络层数),在下面确定每层节点数,然后选择下函数:logsig ,purelin,tansig。最后,关闭此窗口。单击View,即可显示结构。
然后按train,在 inputs和targets里面填入输入值X和训练的Y,在training parameters中设置你要的参数,比如误差。最后按train就可以开始训练。完了一定记住按网络模型输出(Export),将模型转入command windows。下面调用:如y1=sim(network1,x0);plot(x,y,'o',x0,y0,y1,':')。
如果你要程序,可以这样:
function BP
x=[-1:0.01:1];
y=[-1:0.01:1];
p=[x;y];
T=x.^2+y.^2;
x0=[-1:0.1:1];
y0=[-1:0.1:1];
p0=[x0;y0];
T0=x0.^2+y0.^2;
net=newff(minmax(p),[10,1],{'logsig','purelin'});
net.trainParam.epochs=10000;
net.trainParam.goal=1e-6;
net=train(net,p,T);
figure;
T1=sim(net,p0);
plot(p,T,'o',p0,T0,p0,T1,':');
end

❾ matlab怎么打开神经网络的工具箱

还有,蚁群算法有没有工具箱?怎么打开,求帮忙! 查看原帖>>

❿ MATLAB R2012A 神经网络的预测代码及解释

利用matlab进行神经网络建模,可以有两种方式,第一、使用M语言编程来实现模型的量化。第二、直接使用matlab自带的神经网络工具箱,有BP,RBF,小波神经网络等工具箱,都可以实现神经网络建模,神经网络建模实际就是模拟人的大脑来对问题进行分析,然后摸索规律,进行建模,一般有N的输入项,1个输出项(也可有多个),实际就是分析N个输入项对于输出项的影响权重。如果有需要可以,我们可以再交流。

阅读全文

与小波神经网络matlab工具箱相关的资料

热点内容
水流指示器旁试水管采用什么阀门 浏览:407
自动阀门怎么手动 浏览:482
大米成套设备哪个品牌好 浏览:58
轴承多少个型号 浏览:136
西门子数控工具箱 浏览:825
机床齿轮用什么材料最好 浏览:155
尚赫仪器包有哪些产品 浏览:118
车内仪表盘显示90度是什么意思 浏览:320
设备进退场费如何计算 浏览:645
为什么搭实验装置 浏览:88
友嘉机床怎么在线加工 浏览:16
路桥机械制造有限公司怎么样 浏览:596
纸色谱分离氨基酸实验报告装置图 浏览:885
设备锁怎么解除qq中心 浏览:847
地暖圆形阀门怎么开关 浏览:211
浙江天然气阀门 浏览:227
采暖管道阀门安装检验批 浏览:656
东莞永丰五金制品厂招聘 浏览:342
鸡自动饮水的装置 浏览:638
地热阀门什么价格 浏览:104