导航:首页 > 五金知识 > matlab神经网络工具箱默认设置

matlab神经网络工具箱默认设置

发布时间:2022-06-09 04:27:58

1. matlab的神经网络工具箱问题

线性神经网络的构建:
net=newlin(PR,S,ID,LR)
PR--Rx2阶矩阵,R个输入元素的最小最大矩阵
S---输出层神经元个数
ID--输入延迟向量,默认值为[0]
IR--学习率,默认值为0.01

net = newlin([-1 1;-1 1],1); 表示设计的是一个双输入单输出线性神经网络
P = [1 2 2 3; 2 1 3 1];表示输入样本有四个,每一列就是一个输入样本
又比如假设我们期望的输出为 T=[1 2 3 4],则一个简单的神经网络如下:

>>net = newlin([-1 1;-1 1],1);%创建初始网络
P=[1 2 2 3; 2 1 3 1]%输入
T=[1 2 3 4]%期望的输出
net=newlind(P,T);%用输入和期望训练网络
Y=sim(net,P)%仿真,可以看到仿真结果Y和期望输出T的接近程度
P =
1 2 2 3
2 1 3 1
T =
1 2 3 4
Y =
0.8889 2.1667 3.0556 3.8889

楼主可以从《matlab神经网络与应用(第二版)》董长虹 开始入门神经网络的matlab实现

参考资料:《matlab神经网络与应用(第二版)》

2. matlab神经网络工具箱问题

线性神经网络的构建:
net=newlin(PR,S,ID,LR)
PR--Rx2阶矩阵,R个输入元素的最小最大矩阵
S---输出层神经元个数
ID--输入延迟向量,默认值为[0]
IR--学习率,默认值为0.01

net = newlin([-1 1;-1 1],1); 表示设计的是一个双输入单输出线性神经网络
P = [1 2 2 3; 2 1 3 1];表示输入样本有四个,每一列就是一个输入样本
又比如假设我们期望的输出为 T=[1 2 3 4],则一个简单的神经网络如下:

>>net = newlin([-1 1;-1 1],1);%创建初始网络
P=[1 2 2 3; 2 1 3 1]%输入
T=[1 2 3 4]%期望的输出
net=newlind(P,T);%用输入和期望训练网络
Y=sim(net,P)%仿真,可以看到仿真结果Y和期望输出T的接近程度
P =
1 2 2 3
2 1 3 1
T =
1 2 3 4
Y =
0.8889 2.1667 3.0556 3.8889

楼主可以从《matlab神经网络与应用(第二版)》董长虹 开始入门神经网络的matlab实现

参考资料:《matlab神经网络与应用(第二版)》

3. 如何使用matlab神经网络工具箱

为了看懂师兄的文章中使用的方法,研究了一下神经网络
昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,网络知道里倒是有一个,可以运行的,先贴着做标本

% 生成训练样本集
clear all;
clc;
P=[110 0.807 240 0.2 15 1 18 2 1.5;
110 2.865 240 0.1 15 2 12 1 2;
110 2.59 240 0.1 12 4 24 1 1.5;
220 0.6 240 0.3 12 3 18 2 1;
220 3 240 0.3 25 3 21 1 1.5;
110 1.562 240 0.3 15 3 18 1 1.5;
110 0.547 240 0.3 15 1 9 2 1.5];
0 1.318 300 0.1 15 2 18 1 2];
T=[54248 162787 168380 314797;
28614 63958 69637 82898;
86002 402710 644415 328084;
230802 445102 362823 335913;
60257 127892 76753 73541;
34615 93532 80762 110049;
56783 172907 164548 144040];
@907 117437 120368 130179];
m=max(max(P));
n=max(max(T));
P=P'/m;
T=T'/n;
%-------------------------------------------------------------------------%
pr(1:9,1)=0; %输入矢量的取值范围矩阵
pr(1:9,2)=1;
bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm');
%建立BP神经网络, 12个隐层神经元,4个输出神经元
%tranferFcn属性 'logsig' 隐层采用Sigmoid传输函数
%tranferFcn属性 'logsig' 输出层采用Sigmoid传输函数
%trainFcn属性 'traingdx' 自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数
%learn属性 'learngdm' 附加动量因子的梯度下降学习函数
net.trainParam.epochs=1000;%允许最大训练步数2000步
net.trainParam.goal=0.001; %训练目标最小误差0.001
net.trainParam.show=10; %每间隔100步显示一次训练结果
net.trainParam.lr=0.05; %学习速率0.05
bpnet=train(bpnet,P,T);
%-------------------------------------------------------------------------
p=[110 1.318 300 0.1 15 2 18 1 2];
p=p'/m;
r=sim(bpnet,p);
R=r'*n;
display(R);

运行的结果是出现这样的界面

点击performance,training state,以及regression分别出现下面的界面

再搜索,发现可以通过神经网络工具箱来创建神经网络,比较友好的GUI界面,在输入命令里面输入nntool,就可以开始了。

点击import之后就出现下面的具体的设置神经网络参数的对话界面,
这是输入输出数据的对话窗

首先是训练数据的输入

然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等

点击view,可以看到这是神经网络的可视化直观表达

创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果

4. matlab神经网络工具箱分别怎么用

1单击Apps,在搜索框中输入neu,下方出现了所有神经网络工具箱。neural net fitting 是我们要使用的神经网络拟合工具箱。 2 在下界面中点击next 3 单击load example data set,得到我们需要的测试数据。

5. 关于matlab神经网络工具箱的问题

在工具箱中点击“new network”,按需求建立神经网络后,在network中点击已有的神经网络,在点击“networks only”中的training.在新出现的对话框中simulink可看到隐层,weight中可设置权值。

6. 如何使用matlab中的工具箱

上面的最优答案废话有点多,我补充一个简洁版答案:
一、自带工具箱:
直接使用。都在toolbox文件夹内,而且默认早已设定完毕。
二、非自带工具箱:
按照这个步骤:
1)下载并解压;
2)复制到matlab安装目录下的toolbox文件夹内(当然也可以放到别处~);
3)在matlab的菜单:file-set path中,添加路径,要求是连同子文件夹一同添加,路径就是刚才你放置文件夹的地方。设定好了记得save。
4)完毕!

7. Matlab神经网络工具箱输入问题

线性神经网络的构建: net=newlin(PR,S,ID,LR) PR--Rx2阶矩阵,R个输入元素的最小最大矩阵 S---输出层神经元个数专 ID--输入延迟向量,默属认值为[0] IR--学习率,默认值为0.01 net = newlin([-1 1;-1 1],1); 表示设计的是一个双输入单输出线性神经网络 P = [1 2 2 3; 2 1 3 1];表示输入样本有四个,每一列就是一个输入样本 又比如假设我们期望的输出为 T=[1 2 3 4],则一个简单的神经网络如下: >>net = newlin([-1 1;-1 1],1);%创建初始网络 P=[1 2 2 3; 2 1 3 1]%输入 T=[1 2 3 4]%期望的输出 net=newlind(P,T);%用输入和期望训练网络 Y=sim(net,P)%仿真,可以看到仿真结果Y和期望输出T的接近程度 P = 1 2 2 3 2 1 3 1 T = 1 2 3 4 Y...

8. 一个关于BP神经网络的问题,matlab中神经网络工具箱的初始权值和阀值是

训练BP神经网络所采取的随机初始参数确实是随机的,在训练过程中这些参数和权值都会朝着同一个大方向进行修正。例如你用BP神经网络来拟合曲线,找到输入值与输出值之间的线性规律,那么在训练的过程中这个拟合的曲线会不断的调整其参数和权值直到满足几个预设条件之一时训练停止。虽然这个训练出来的结果有时候会有一定误差,但都在可以接受的范围内。
缩小误差的一个方法是需要预先设置初始参数,虽然每次依然会得到不一样的模型(只要参数是随机修正的),但不同模型之间的差距会很小。另外可以反复训练,找到一个自己觉得满意的模型(可以是测试通过率最高,可以是平均结果误差值最小)。
至于你说别人怎么检查你的论文结果,基本上都是通过你的算法来重建模型,而且还不一定都用matlab来做,即便是用同样的代码都会出现不同的结果,何况是不同的语言呢?其实验算结果最重要的是看测试时的通过率,例如在对一组新的数据进行测试(或预测)时,通过率达到95%,别人用其他的方式重建了你的模型也得到这样的通过率,那么你的算法就是可行的。注意,在计算机专业的论文里面大家看重的不是代码,而是算法。
补充一点:只要你训练好了一个神经网络可以把这个神经网络以struct形式保存,这样这个网络可以被反复使用,且每次对同一组测试数据的预测结果都会一样。你也可以当做是检测论文可行性的工具。

9. MATLAB神经网络工具箱

对 应该转置一下,NN工具箱里默认每个数据都是列向量

阅读全文

与matlab神经网络工具箱默认设置相关的资料

热点内容
暖气阀门一字原理 浏览:715
罗茨风机启动时进气阀门 浏览:831
阀门类精铸件怎么样 浏览:297
甩手工具箱手机详情 浏览:971
机车齿轮传动装置的分类和比较 浏览:437
温度自动检定装置 浏览:93
为什么机械数 浏览:437
铸造工厂韩语怎么说 浏览:124
恒丰电动工具是哪个厂代工的 浏览:527
消防高位水箱设自动补水装置 浏览:952
喷淋管道阀门一般在哪 浏览:458
北欧之里管道阀门 浏览:43
中山市台正数控机床厂怎么样 浏览:258
暖气阀门装1个可以吗 浏览:884
西湖5立方煤气阀门 浏览:432
碳和浓硫酸反应的实验装置 浏览:743
酒精灯加什么仪器好 浏览:143
机械报验要哪些材料 浏览:112
加工中心减压阀门怎么接 浏览:466
室外暧气管道阀门给水和回水阀都要打开吗 浏览:345