导航:首页 > 五金知识 > bp神经网络工具箱调用

bp神经网络工具箱调用

发布时间:2022-06-02 03:12:34

⑴ matlab中bp神经网络的工具箱怎么用,不要matlab程序,就工具箱怎么实现问题的解决

matlab中神经网络的工具箱:输入nntool,就会弹出一个对话框,然后你就可以根据弹出框的指示来操作。

⑵ 关于BP神经网络MATLAB程序

1.matlab不同版本好像对样本设置不太一样,你可以试试。我用过的是一行是一个样本。
2.有matlab第三方程序可以下载,只需要修改相关参数就可以实现神经网络的训练。也有相关的书籍已经出版了,好像是思科出的,可以参考。
3.神经网络训练本身是依靠人的经验的,这些参数的确定也是这样。当然要考虑训练样本的实际情况和你所要求的训练精度。具体参数的意义忘记了,可以参考思科的书看看。

⑶ bp神经网络 matlab 工具箱怎么调出来

有神经网络的工具箱,bp是配出来的!

⑷ 需要把MATLAB中的BP神经网络工具箱与自己的一个软件项目结合

这个就是C++与matlab混合编程。但是神经网络工具箱比较特别,它反盗用比较严厉。采用回传统的混答编方式,可以调用matlab自己的函数,但无法成功调用神经网络工具箱。这一点在mathwork网站上也做了说明。

以C#为例,一般混编有四种方式:
(1)利用Matlab自身编译器,目的是将m文件转换为c或c++的源代码。
(2)利用COM或.NET组件技术。通过MATLAB中的Deploy tool工具将m文件编译成dll,然后在系统中调用。
(3)利用Mideva平台。没尝试过。
(4)利用MATLAB引擎技术。该方法相当于在.NET中运行MATLAB程序,获取其结果。优点是操作简单,过程简易。缺点是需要安装Matlab软件。

如果要调用神经网络工具箱,只有使用第四种方法,即引擎技术,其他方法都不可行。这种混编方式仅仅传递参数,因此不涉及到神经网络工具箱的代码,也就没有了防盗用限制。

⑸ 本人新手,在做BP神经网络的时候遇到了一个问题

150张图取些有效的特征出来用统计学方法算协方差什么的分类.225*225*3的神经网络没有10万张以上的图根本训练不出效果.你的神经网络有225*225*3加上阀值的权数自由度太大,自然用哪类图训练就变成适应哪类图的样子.假如是为了完成作业,可压缩图像用,20*20*3以内甚至更小的网络建模.还有在训练时dw乘以一个小参数,轮流多次用同样的数据训练,并不是每次训练减小的误差越小越好.(除非用full batch方法)重复多次才能达到最好效果.

⑹ 1.如何用MATLAB神经网络工具箱创建BP神经网络模型具体有哪些步骤请高手举实例详细解释下 2.如何把输

%人脸识别模型,脸部模型自己找吧。
function mytest()

clc;
images=[ ];
M_train=3;%表示人脸
N_train=5;%表示方向
sample=[];
pixel_value=[];
sample_number=0;

for j=1:N_train
for i=1:M_train
str=strcat('Images\',num2str(i),'_',num2str(j),'.bmp'); %读取图像,连接字符串形成图像的文件名。
img= imread(str);
[rows cols]= size(img);%获得图像的行和列值。
img_edge=edge(img,'Sobel');

%由于在分割图片中我们可以看到这个人脸的眼睛部分也就是位于分割后的第二行中,位置变化比较大,而且眼睛边缘检测效果很好

sub_rows=floor(rows/6);%最接近的最小整数,分成6行
sub_cols=floor(cols/8);%最接近的最小整数,分成8列
sample_num=M_train*N_train;%前5个是第一幅人脸的5个角度

sample_number=sample_number+1;
for subblock_i=1:8 %因为这还在i,j的循环中,所以不可以用i
block_num=subblock_i;
pixel_value(sample_number,block_num)=0;
for ii=sub_rows:(2*sub_rows)
for jj=(subblock_i-1)*sub_cols+1:subblock_i*sub_cols
pixel_value(sample_number,block_num)=pixel_value(sample_number,block_num)+img_edge(ii,jj);
end
end
end
end
end
%将特征值转换为小于1的值
max_pixel_value=max(pixel_value);
max_pixel_value_1=max(max_pixel_value);
for i=1:3
mid_value=10^i;
if(((max_pixel_value_1/mid_value)>1)&&((max_pixel_value_1/mid_value)<10))
multiple_num=1/mid_value;
pixel_value=pixel_value*multiple_num;
break;
end
end

% T 为目标矢量
t=zeros(3,sample_number);
%因为有五类,所以至少用3个数表示,5介于2的2次方和2的3次方之间
for i=1:sample_number
% if((mod(i,5)==1)||(mod(i,5)==4)||(mod(i,5)==0))
if(i<=3)||((i>9)&&(i<=12))||((i>12)&&(i<=15))
t(1,i)=1;
end
%if((mod(i,5)==2)||(mod(i,5)==4))
if((i>3)&&(i<=6))||((i>9)&&(i<=12))
t(2,i)=1;
end
%if((mod(i,5)==3)||(mod(i,5)==0))
if((i>6)&&(i<=9))||((i>12)&&(i<=15))
t(3,i)=1;
end
end

% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真

% 定义训练样本
% P 为输入矢量
P=pixel_value'
% T 为目标矢量
T=t
size(P)
size(T)
% size(P)
% size(T)

% 创建一个新的前向神经网络
net_1=newff(minmax(P),[10,3],{'tansig','purelin'},'traingdm')

% 当前输入层权值和阈值
inputWeights=net_1.IW{1,1}
inputbias=net_1.b{1}
% 当前网络层权值和阈值
layerWeights=net_1.LW{2,1}
layerbias=net_1.b{2}

% 设置训练参数
net_1.trainParam.show = 50;
net_1.trainParam.lr = 0.05;
net_1.trainParam.mc = 0.9;
net_1.trainParam.epochs = 10000;
net_1.trainParam.goal = 1e-3;

% 调用 TRAINGDM 算法训练 BP 网络
[net_1,tr]=train(net_1,P,T);

% 对 BP 网络进行仿真
A = sim(net_1,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)

x=[0.14 0 1 1 0 1 1 1.2]';
sim(net_1,x)

⑺ 如何用MATLAB的神经网络工具箱实现三层BP网络

这是一个来自<神经网络之家>nnetinfo的例子,在matlab2012b运行后的确可以,因为网络知道的文本宽度不够,注释挤到第二行了,有些乱,楼主注意区分哪些是代码哪些是注释,
x1 =
[-3,-2.7,-2.4,-2.1,-1.8,-1.5,-1.2,-0.9,-0.6,-0.3,0,0.3,0.6,0.9,1.2,1.5,1.8]; %x1:x1 = -3:0.3:2;
x2 =
[-2,-1.8,-1.6,-1.4,-1.2,-1,-0.8,-0.6,-0.4,-0.2,-2.2204,0.2,0.4,0.6,0.8,1,1.2];%x2:x2 = -2:0.2:1.2;
y = [0.6589,0.2206,-0.1635,-0.4712,-0.6858,-0.7975,-0.8040,...

-0.7113,-0.5326,-0.2875
,0,0.3035,0.5966,0.8553,1.0600,1.1975,1.2618]; %y:
y = sin(x1)+0.2*x2.*x2;
inputData = [x1;x2]; %将x1,x2作为输入数据

outputData = y; %将y作为输出数据

%使用用输入输出数据(inputData、outputData)建立网络,

%隐节点个数设为3.其中隐层、输出层的传递函数分别为tansig和purelin,使用trainlm方法训练。
net = newff(inputData,outputData,3,{'tansig','purelin'},'trainlm');

%设置一些常用参数
net.trainparam.goal = 0.0001;
%训练目标:均方误差低于0.0001
net.trainparam.show = 400; %每训练400次展示一次结果
net.trainparam.epochs = 15000;
%最大训练次数:15000.
[net,tr] = train(net,inputData,outputData);%调用matlab神经网络工具箱自带的train函数训练网络
simout = sim(net,inputData);
%调用matlab神经网络工具箱自带的sim函数得到网络的预测值
figure; %新建画图窗口窗口
t=1:length(simout);
plot(t,y,t,simout,'r')%画图,对比原来的y和网络预测的y

⑻ 直接用神经网络工具箱构建bp神经网络,希望能给个例子说明,有注解最好,本人matlab新手,谢谢

BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层专前馈网络,是目前应用属最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。


附件就是利用神经网络工具箱构建BP神经网络进行预测的实例。如果要用可视化工具,可以在命令窗口输入nntool.

⑼ matlab bp神经网络工具箱怎么用

%% 训练集/测试集产来生
% 训练源集——用于训练网络
P_train = ;%输入集
T_train = ;%输出集
% 测试集——用于测试或者使用。
P_test = ;%输入
T_test ;
N = size(P_test,2);

%% BP神经网络创建、训练及仿真测试

% 创建网络
net = newff(P_train,T_train,9);
% 设置训练参数
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
net.trainParam.lr = 0.01;
% 训练网络
net = train(net,P_train,T_train);
% 仿真测试、使用。
T_test = sim(net,P_test);%得到结果。

阅读全文

与bp神经网络工具箱调用相关的资料

热点内容
汽车制冷球喷什么 浏览:750
摩托车传动轴轴承多少钱 浏览:869
半自动磨边的调节功能装置有哪些 浏览:567
奶牛自动喂水装置 浏览:275
阀门lc是什么意思 浏览:950
下面实验装置哪个更省力 浏览:177
两相电机的轴承怎么拆 浏览:624
采暖入户阀门是什么阀 浏览:96
做三个小实验装置 浏览:223
佛山市固得焊接设备有限公司怎么样 浏览:381
管道直饮水有阀门 浏览:62
燕秀工具箱无写入权限 浏览:606
带阀门的水龙头怎么用 浏览:128
盛世阀门厂 浏览:503
风冷热泵机组是什么设备 浏览:273
海口木工机械真空泵多少钱 浏览:429
传动装置各轴转速 浏览:746
怎么选耐油阀门 浏览:878
许昌户外健身器材哪里有卖 浏览:350
机械配件门店如何摆放 浏览:635