⑴ matlab中小波分析工具箱中wrcoef和waverec的区别是什么
这两个函数是与wavedec这个函数紧密相连的。
wavedec就是小波分解,将一个信号分解成指定回层数n,并返回答各层的小波系数。
waverec——它的作用与wavedec相反,即将给定的小波系数一次性完全重建出信号。
wrcoef——这个也是输入小波系数,重建信号。但是它与上面有些区别,区别在于它重建的是原信号在指定层次的,高频或者低频分量。也就是说,这个信号不是原本的信号,而且某个层次上的逼近。
⑵ matlab中小波工具cwtft的含义
貌似是连抄续小波变换袭的分解结果。对应小波系数的幅度、相位、实部、虚部。横坐标是原信号的横坐标(一般是时间),纵坐标代表小波分解后的尺度(类似对应时频分析中的频率)。我今天刚看,不过这个函数具体怎么用我还没想明白…
⑶ matlab中小波变换怎么保存各频段能量值大小,用工具箱只能看到分解的各个频段的能量分布图吗
小波分析中只有分解系数,即小波系数,没有重构系数一词,因为重构后就是与原始信号同大小的信号了,已经是具有实际量纲意义的信号了,而不是没有量纲的系数。超越带宽是正常的事,因为DWT的计算都是用滤波器进行的,而实际应用中是没有有理想砖墙效应的滤波器的,即滤波后的结果是不会精准的去掉你要滤去的频率的,总会有很少的残余,或无中生有产生原来没有的频率。中心频率在小波分析中只有一个意思就是某种小波基的中心频率,各频带只有频率没有中心频率。对于CWT小波基的中心频率可以用来算小波时频图。对于DWT你可以直接使用FFT计算个频带的频率,其频带划分可以通过采样定理划分。你计算的是绝对能量,通常应计算相对比重的能量,用wenergy函数,各个频段加起来和为100。比较重构信号的FFT幅值,在哪个频段大是的确就说明该重构信号频率成分主要是这一频段的。问题太多,5分?简直在糟蹋行当。
⑷ 用matlab中工具箱进行小波去噪步骤
matlab读取excel文件比较方便,建议你把数据放到xls文件中保存,然后在matlab中用xlsread这个函数读取出来。版
读取出的数据应该是一权个一维数组了,用plot画出图的话,就是常见的曲线。
然后做小波分解:选用你觉得合适的小波基,例如haar,然后用这个小波基做小波分解,再把高频部分去掉,然后用低频部分还原,就得到了去噪后的信号。
其实你这个问题估计也可以用神经网络或者其它曲线拟合一类手段来解决。具体的情况要根据数据特征来判断。
以上。
专业路过的老狼
⑸ matlab小波变换工具箱分解得出的柱状图,横纵坐标分别什么意思求解答谢谢
这问题还满难的,在来帮助文源档wavele toolbox的Advanced concepts中有一些提及。横坐标很好理解,是leleccum信号(总点数4320)幅值,从121.8到547.4,然后按照通常定义的hist的定义,把这个范围化为30个等分,但有意思的是纵坐标并不是某个幅值的个数,可能是密度估计值,可以参考帮助文档(FunctionEstimation:DensityandRegression),怎么算matlab也讲得不太清楚,可能需要数理统计方面的知识。我只推出了左边的图是个数除总点数得到。
直接的hist图是
完全吻合。
右边图貌似做了归一化,但如何操作还没想通,好像是累计分布,可以参考ecdfhist 的帮助文档,这需要Statistics Toolbox中的某些知识。水平有限,仅供参考。
⑹ 怎么用matlab实现小波变换急!!!
Allnodes 计算树结点
appcoef 提取一维小波变换低频系数
appcoef2 提取二维小波分解低频系数
bestlevt 计算完整最佳小波包树
besttree 计算最佳(优)树
biorfill 双正交样条小波滤波器组
biorwavf 双正交样条小波滤波器
centfrq 求小波中心频率
cgauwavf Complex Gaussian小波
cmorwavf coiflets小波滤波器
cwt 一维连续小波变换
dbaux Daubechies小波滤波器计算
dbwavf Daubechies小波滤波器 dbwavf(W) W='dbN' N=1,2,3,...,50
ddencmp 获取默认值阈值(软或硬)熵标准
depo2ind 将深度-位置结点形式转化成索引结点形式
detcoef 提取一维小波变换高频系数
detcoef2 提取二维小波分解高频系数
disp 显示文本或矩阵
drawtree 画小波包分解树(GUI)
dtree 构造DTREE类
dwt 单尺度一维离散小波变换
dwt2 单尺度二维离散小波变换
dwtmode 离散小波变换拓展模式
dyaddown 二元取样
dyap 二元插值
entrupd 更新小波包的熵值
fbspwavf B样条小波
gauswavf Gaussian小波
get 获取对象属性值
idwt 单尺度一维离散小波逆变换
idwt2 单尺度二维离散小波逆变换
ind2depo 将索引结点形式转化成深度—位置结点形式
intwave 积分小波数
isnode 判断结点是否存在
函数指 含义
istnode 判断结点是否是终结点并返回排列值
iswt 一维逆SWT(Stationary Wavelet Transform)变换
iswt2 二维逆SWT变换
leaves
mexihat 墨西哥帽小波
meyer Meyer小波
meyeraux Meyer小波辅助函数
morlet Morlet小波
nodease 计算上溯结点
nodedesc 计算下溯结点(子结点)
nodejoin 重组结点
nodepar 寻找父结点
nodesplt 分割(分解)结点
noleaves
ntnode
ntree
orthfill 正交小波滤波器组
plot 绘制向量或矩阵的图形
qmf 镜像二次滤波器
rbiowavf
read 读取二进制数据
readtree 读取小波包分解树
scal2frq
set
shanwavf
swt 一维SWT(Stationary Wavelet Transform)变换
swt2 二维SWT变换
symaux
symwavf Symlets小波滤波器
thselect 信号消噪的阈值选择
thodes
treedpth 求树的深度
treeord 求树结构的叉数
函数指令 含义
upcoef 一维小波分解系数的直接重构
upcoef2 二维小波分解系数的直接重构
upwlev 单尺度一维小波分解的重构
upwlev2 单尺度二维小波分解的重构
wavedec 单尺度一维小波分解
wavedec2 多尺度二维小波分解
wavedemo 小波工具箱函数demo
wavefun 小波函数和尺度函数
wavefun2 二维小波函数和尺度函数
wavemenu 小波工具箱函数menu图形界面调用函数
wavemngr 小波管理函数
waverec 多尺度一维小波重构
waverec2 多尺度二维小波重构
wbmpen
wcodemat 对矩阵进行量化编码
wdcbm
wdcbm2
wden 用小波进行一维信号的消噪或压缩
wdencmp
wentropy 计算小波包的熵
wextend
wfilters 小波滤波器
wkeep 提取向量或矩阵中的一部分
wmaxlev 计算小波分解的最大尺度
wnoise 产生含噪声的测试函数数据
wnoisest 估计一维小波的系数的标准偏差
wp2wtree 从小波包树中提取小波树
spbmpen
wpcoef 计算小波包系数
wpcutree 剪切小波包分解树
wpdec 一维小波包的分解
wpdec2 二维小波包的分解
wpdencmp 用小波包进行信号的消噪或压缩
wpfun 小波包函数
wpjoin
wprcoef 小波包分解系数的重构
wprec 一维小波包分解的重构
wprec2 二维小波包分解的重构
wpsplt 分割(分解)小波包
wpthcoef 进行小波包分解系数的阈值处理
wptree
wpviewcf
wrcoef 对一维小波系数进行单支重构
wrcoef2 对二维小波系数进行单支重构
wrev 向量逆序
write 向缓冲区内存写进数据
wtbo
wthcoef 一维信号的小波系数阈值处理
wthcoef2 二维信号的小波系数阈值处理
wthresh 进行软阈值或硬阈值处理
wthrmngr 阈值设置管理
wtreemgr 管理树结构
wvarchg
⑺ matlab小波分析工具箱的使用方法 求详细过程
将原始数据文件夹到装有matlab的电脑
打开matlab软件,进入软件主界面
在软件的左下方找到start按钮,点击选择toolbox,然后选择wavelet
进入wavemenu界面,选择一维小波中的wavelet1-D并进入
5.将数据文件(.Mat格式)托到matlab软件主界面的workspace
6.在wavemenu主界面中选择file-load signal或者import from workspace—import signal
7.选择要处理的信号,界面出现loaded信号,这就是没有去噪前的原
始信号
8.右上角选择用于小波分析的小波基以及分解层数并点击analyse开始分析
9.分析后在左边栏目中出现s,a*,d*,其中s为原信号,a*为近似信号,d*为细节信号
10.然后点击denoise去噪
11.阈值方法常用的有4种fixed(固定阈值),rigorsure,heusure,minmax根据需要选择,一般情况下rigorsure方式去噪效果较好
12.oft(软阈值),hard(硬阈值)一般选择软阈值去噪后的信号较为平滑
13.在噪声结构中选择unscaled white noise,因为在工程应用中的噪声一般不仅仅含有白噪声
14.在噪声结构下面的数值不要随意改,这是系统默认的去噪幅度
15.点击denoise开始正式去噪
16.在此窗口下点击file-save denoised singal,保存输出去噪后的信号
17.去噪结束
18.去噪结束后,把去噪后信号(.mat格式)拖至matlab主界面的workspace中,与原信号一起打包,以便以后计算统计量
19.Matlab编程计算相关统计量以及特征量
20.得出统计量和特征量后结束
⑻ 如何将matlab中simulink的示波器的波形导入到小波变换工具箱
可以用save函数将数据保存为mat文件,然后利用wavemenu函数导入工具箱
⑼ matlab中的小波工具箱怎么用,希望能详细介绍
将原始数据文件夹到装有matlab的电脑
打开matlab软件,进入软件主界面
在软件的左下方找到start按钮,点击选择toolbox,然后选择wavelet
进入wavemenu界面,选择一维小波中的wavelet1-D并进入
5.将数据文件(.Mat格式)托到matlab软件主界面的workspace
6.在wavemenu主界面中选择file-load signal或者import from workspace—import signal
7.选择要处理的信号,界面出现loaded信号,这就是没有去噪前的原
始信号
8.右上角选择用于小波分析的小波基以及分解层数并点击analyse开始分析
9.分析后在左边栏目中出现s,a*,d*,其中s为原信号,a*为近似信号,d*为细节信号
10.然后点击denoise去噪
11.阈值方法常用的有4种fixed(固定阈值),rigorsure,heusure,minmax根据需要选择,一般情况下rigorsure方式去噪效果较好
12.oft(软阈值),hard(硬阈值)一般选择软阈值去噪后的信号较为平滑
13.在噪声结构中选择unscaled white noise,因为在工程应用中的噪声一般不仅仅含有白噪声
14.在噪声结构下面的数值不要随意改,这是系统默认的去噪幅度
15.点击denoise开始正式去噪
16.在此窗口下点击file-save denoised singal,保存输出去噪后的信号
17.去噪结束
18.去噪结束后,把去噪后信号(.mat格式)拖至matlab主界面的workspace中,与原信号一起打包,以便以后计算统计量
19.Matlab编程计算相关统计量以及特征量
20.得出统计量和特征量后结束
⑽ 如何使用matlab中的工具箱
上面的最优答案废话有点多,我补充一个简洁版答案:
一、自带工具箱:
直接使用。都在toolbox文件夹内,而且默认早已设定完毕。
二、非自带工具箱:
按照这个步骤:
1)下载并解压;
2)复制到matlab安装目录下的toolbox文件夹内(当然也可以放到别处~);
3)在matlab的菜单:file-set path中,添加路径,要求是连同子文件夹一同添加,路径就是刚才你放置文件夹的地方。设定好了记得save。
4)完毕!