导航:首页 > 五金知识 > 算法工具箱中函数

算法工具箱中函数

发布时间:2022-05-02 05:48:51

A. 请教一下,用遗传算法工具箱怎么求下面函数的最小值

题主给出函数用遗传算法工具箱求其最小值,可以这样来做:

1、自定义函数,并保存专为leijia.m文件。

2、在当前属目录下,执行 optimtool,打开最优化工具箱,再选择遗传算法工具箱

3、按表中格式,输入相关内容,最后执行可以得到

B. 如何调用matlab遗传算法工具箱中的bs2rv、crtbase、crtbp等函数

网上下载遗传工具箱(网上主要有三类,基本差不多都有你说的这几个函数)。然后加入路径就可以使用了。

C. 如何用遗传算法工具箱中的函数画出适应度函数曲线

matlab有遗传算法工具箱。

核心函数:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

注意】matlab工具箱函数必须放在工作目录下
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

D. matlab遗传算法工具箱函数的参数问题

可能的原因是:
1.gatbx工具箱下的crtbp函数的文件名为crtbp.m,大小写不统一所以出现了warning,需要把把专它改为属小写的crtbp.m;
2.gatbx属于第三方工具箱,matlab自身对它是没有说明的,所以搜不到这些遗传算法的指令。

E. 谁对谢菲尔德遗传算法工具箱比较熟,里面一些函数不太懂

select是选择函数

F. Matlab遗传算法工具箱里的crtrp函数为何总是出错

??在看雷英杰《MATLAB遗传算法工具箱及应用》函数用法的时候发现书上的例子不能运行
FielDR=[-10,-5,-3,-1;10,5,3,1]
Chrom=crtrp(6,FielDR)
Error: File: crtrp.M Line: 34 Column: 19
nargin previously appeared to be used as a function or command, conflicting with its use here as the name of a variable.
A possible cause of this error is that you forgot to initialize the
variable, or you have initialized it implicitly using load or eval.
而且工具箱中自带的例子mpga.m运行也会出错,错误就在crtrp这个函数,不解,求高手帮忙1 楼是crtrp这个m文件的问题,把34行注释掉再保存运行看看3 楼上面说的很对,你把出问题的那部分注释掉再保存运行就OK了。4 楼你太有才了哥们留个邮箱吧有什么问题问你哈我用这个做课题。5 楼真是太谢谢了,有学到一招6 楼:handshake谢谢我这两天一直在运行就是一直出错原来是这个问题7 楼我正遇到这个问题,是怎么回事呀?我试下把34行把34行注释掉再保存运行看看8 楼谢谢了,刚好碰到了这个问题,我发现这个论坛太好了
声明:本页面所有内容来源于网络,本站仅作收集整理,版权属于原网站所有,请通过
获取更详细信息

G. 遗传算法工具箱 unique函数用法

unique函数用来去除矩阵A中重复的元素,
比如说A=[1,2,3,3,4],那么unique(A)=[1,2,3,4];
如果A=[1,2,3;3,4,5],那么unique(A)=[1,2,3,4,5];
unique(A,'rows')用来去除矩阵A中重复的行,
比如说A=[1,2,3;4,5,6;1,2,3],
那么unique(A,'rows')=[1,2,3;4,5,6];

H. 用遗传算法工具箱怎么求解线性约束函数

Matlab遗传算法工具箱是可以施加的非线性隐性约束条件的。例如:
min z= 3050*x1³+0.25*x2;
其中x1定义域[-0.381,0.381],x2定义域[-100,100]
求目标函数值为10时的x1、x2值。
求解结果
x1=0.14169943480903302 x2=5.289387991237991
function [c,ceq]=ga_con(x) %非线性约束条件函数
c=10-(3050*x(1)^3+0.25*x(2));
ceq=[];

I. matlab遗传算法工具箱求解多元函数显示输入参数数目不足求解答,非常感谢

错误的主要原因是你写的函数有问题。函数应该这样来表示:

function y = Test1(x)

a=x(1);b=x(2);

y=a+b;

end

使用优化工具箱,选择ga,运行可以得到如下结果

J. 遗传算法工具箱的具体使用

matlab遗传算法工具箱函数及实例讲解 核心函数:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

阅读全文

与算法工具箱中函数相关的资料

热点内容
阀门冻坏了怎么办 浏览:864
单线水温感应塞给仪表什么信号 浏览:796
麻城市五金机电城地址 浏览:261
游乐园设备什么时候维修 浏览:116
诚帆阀门厂招聘电话 浏览:472
搅拌机选用什么轴承 浏览:739
起亚智跑如何在仪表盘显示速度 浏览:742
健身器材业务怎么找 浏览:30
电能计量装置典型设计 浏览:539
超声波作用在水会产生什么 浏览:50
本田缤智汽车仪表盘上号什么意思 浏览:333
福州五金零售市场 浏览:429
为什么雷云检测不到设备 浏览:756
cadence机械孔怎么画 浏览:278
暖气进户平口阀门 浏览:587
长城机床怎么拷贝程序 浏览:131
r22制冷剂添加什么会结冰 浏览:719
拉管用什么设备 浏览:969
五金件报价公式 浏览:702
什么运动器材五块钱十个 浏览:415