导航:首页 > 五金知识 > matlab神经网络工具箱该如何安装

matlab神经网络工具箱该如何安装

发布时间:2022-04-17 00:48:02

Ⅰ 如何使用matlab中的工具箱

上面的最优答案废话有点多,我补充一个简洁版答案:
一、自带工具箱:
直接使用。都在toolbox文件夹内,而且默认早已设定完毕。
二、非自带工具箱:
按照这个步骤:
1)下载并解压;
2)复制到matlab安装目录下的toolbox文件夹内(当然也可以放到别处~);
3)在matlab的菜单:file-set path中,添加路径,要求是连同子文件夹一同添加,路径就是刚才你放置文件夹的地方。设定好了记得save。
4)完毕!

Ⅱ matlab bp神经网络工具箱怎么用

%% 训练集/测试集产来生
% 训练源集——用于训练网络
P_train = ;%输入集
T_train = ;%输出集
% 测试集——用于测试或者使用。
P_test = ;%输入
T_test ;
N = size(P_test,2);

%% BP神经网络创建、训练及仿真测试

% 创建网络
net = newff(P_train,T_train,9);
% 设置训练参数
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
net.trainParam.lr = 0.01;
% 训练网络
net = train(net,P_train,T_train);
% 仿真测试、使用。
T_test = sim(net,P_test);%得到结果。

Ⅲ matlab怎么打开神经网络工具箱

1单击Apps,在搜索框中输入neu,下方出现了所有神经网络工具箱。neural net fitting 是我们要使回用的神答经网络拟合工具箱。

2
在下界面中点击next

3
单击load example data set,得到我们需要的测试数据。

4
单击import

5
单击next

6
单击next

7
数字“10”表示有10个隐含层。单击next。

8
单击train,开始训练。

9
训练过程跳出的小窗口。

10
训练结果。其中MSE表示均方差,R 表示相关系数。单击next。

11
这里可以调整神经网络,也可以再次训练。单击next。

12
在这里,可以保存结果。如果不需要,直接finish。

Ⅳ matlab中bp神经网络的工具箱怎么用,不要matlab程序,就工具箱怎么实现问题的解决

matlab中神经网络的工具箱:输入nntool,就会弹出一个对话框,然后你就可以根据弹出框的指示来操作。

Ⅳ matlab安装时有好多组件,我该安装哪些我学测量的,只需要一般的函数运算和M文件编辑、、

matlab的很多组件是相互进行协调的,缺乏之后可能出现无法使用的情况。

Trading Toolbox™: 一款用于访问价格并将订单发送到交易系统的新产品。

Financial Instruments Toolbox™: 赫尔-怀特、线性高斯和 LIBOR 市场模型的校准和 Monte Carlo 仿真。

image Processing Toolbox™: 使用有效轮廓进行图像分割、对 10 个函数实现 C 代码生成,对 11 个函数使用 GPU。

Image Acquisition Toolbox™: 提供了用于采集图像、深度图和框架数据的 Kinect® for Windows®传感器支持。

MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用MATLAB函数集)扩展了MATLAB 环境,以解决这些应用领域内特定类型的问题。

(5)matlab神经网络工具箱该如何安装扩展阅读:

MATLAB系统由MATLAB开发环境、MATLAB数学函数库、MATLAB语言、MATLAB图形处理系统和MATLAB应用程序接口(API)五大部分构成。

1、开发环境

MATLAB开发环境是一套方便用户使用的MATLAB函数和文件工具集,其中许多工具是图形化用户接口。它是一个集成的 用户工作空间,允许用户输入输出数据,并提供了M文件的集成编译和调试环境,包括MATLAB桌面、命令窗口、M文件编辑调试器、MATLAB工作空间和在线帮助文档。

2、数学函数

MATLAB数学函数库包括了大量的计算算法。从基本算法如四则运算、三角函数,到复杂算法如矩阵求逆、快速傅里叶变换等。

3、语言

MATLAB语言是一种高级的基于矩阵/数组的语言,它有程序流控制、函数、数据结构、输入/输出和面向对象编程等特色。用这种语言能够方便快捷建立起简单运行快的程序,也能建立复杂的程序。

4、图形处理

图形处理系统使得MATLAB能方便的图形化显示向量和矩阵,而且能对图形添加标注和打印。它包括强大的二维三维图形函数、图像处理和动画显示等函数。

Ⅵ 在matlab中怎么使用神经网络工具箱

为了看懂师兄的文章中使用的方法,研究了一下神经网络 昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,网络知道里倒是有一个,可以运行的,先贴着做标本 % 生成训练样本集 clear all; cl

Ⅶ 在哪能下的matlab的神经网络工具箱

MATLAB的神经自网络工具箱是内置的,如果完全安装了MATLAB,那么你可以在MATLAB的帮助页面上(帮助页面可以在Comand Window下输入'help help '(不名括单引号),然后看Contents里有 Neural Network Toolbox。

神经网络工具箱有个教学GUI,可以在Comand Window下输nnd'(不名括单引号,小写)(因为这个教学GUI是和一本书结合的,这本书叫Neural Network Design,作者Martin T.Hagan,Howard B.Demuth,强烈推荐学习这本经典教材,会让你入门并稍有进阶)

Ⅷ matlab神经网络工具箱分别怎么用

1单击Apps,在搜索框中输入neu,下方出现了所有神经网络工具箱。neural net fitting 是我们要使用的神经网络拟合工具箱。 2 在下界面中点击next 3 单击load example data set,得到我们需要的测试数据。

Ⅸ matlab的神经网络工具箱怎么用

1.神经网络
神经网络是单个并行处理元素的集合,我们从生物学神经系统得到启发。在自然界,网络功能主要由神经节决定,我们可以通过改变连接点的权重来训练神经网络完成特定的功能。
一般的神经网络都是可调节的,或者说可训练的,这样一个特定的输入便可得到要求的输出。如下图所示。这里,网络根据输出和目标的比较而调整,直到网络输出和目标匹配。作为典型,许多输入/目标对应的方法已被用在有监督模式中来训练神经网络。
神经网络已经在各个领域中应用,以实现各种复杂的功能。这些领域包括:模式识别、鉴定、分类、语音、翻译和控制系统。
如今神经网络能够用来解决常规计算腿四岩越饩龅奈侍狻N颐侵饕ü飧龉ぞ呦淅唇⑹痉兜纳窬缦低常⒂τ玫焦こ獭⒔鹑诤推渌导氏钅恐腥ァ?BR>一般普遍使用有监督训练方法,但是也能够通过无监督的训练方法或者直接设计得到其他的神经网络。无监督网络可以被应用在数据组的辨别上。一些线形网络和Hopfield网络是直接设计的。总的来说,有各种各样的设计和学习方法来增强用户的选择。
神经网络领域已经有50年的历史了,但是实际的应用却是在最近15年里,如今神经网络仍快速发展着。因此,它显然不同与控制系统和最优化系统领域,它们的术语、数学理论和设计过程都已牢固的建立和应用了好多年。我们没有把神经网络工具箱仅看作一个能正常运行的建好的处理轮廓。我们宁愿希望它能成为一个有用的工业、教育和研究工具,一个能够帮助用户找到什么能够做什么不能做的工具,一个能够帮助发展和拓宽神经网络领域的工具。因为这个领域和它的材料是如此新,这个工具箱将给我们解释处理过程,讲述怎样运用它们,并且举例说明它们的成功和失败。我们相信要成功和满意的使用这个工具箱,对范例和它们的应用的理解是很重要的,并且如果没有这些说明那么用户的埋怨和质询就会把我们淹没。所以如果我们包括了大量的说明性材料,请保持耐心。我们希望这些材料能对你有帮助。
这个章节在开始使用神经网络工具箱时包括了一些注释,它也描述了新的图形用户接口和新的运算法则和体系结构,并且它解释了工具箱为了使用模块化网络对象描述而增强的机动性。最后这一章给出了一个神经网络实际应用的列表并增加了一个新的文本--神经网络设计。这本书介绍了神经网络的理论和它们的设计和应用,并给出了相当可观的MATLAB和神经网络工具箱的使用。

2.准备工作
基本章节
第一章是神经网络的基本介绍,第二章包括了由工具箱指定的有关网络结构和符号的基本材料以及建立神经网络的一些基本函数,例如new、init、adapt和train。第三章以反向传播网络为例讲解了反向传播网络的原理和应用的基本过程。
帮助和安装
神经网络工具箱包含在nnet目录中,键入help nnet可得到帮助主题。
工具箱包含了许多示例。每一个

Ⅹ 如何使用matlab神经网络工具箱

为了看懂师兄的文章中使用的方法,研究了一下神经网络
昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,网络知道里倒是有一个,可以运行的,先贴着做标本

% 生成训练样本集
clear all;
clc;
P=[110 0.807 240 0.2 15 1 18 2 1.5;
110 2.865 240 0.1 15 2 12 1 2;
110 2.59 240 0.1 12 4 24 1 1.5;
220 0.6 240 0.3 12 3 18 2 1;
220 3 240 0.3 25 3 21 1 1.5;
110 1.562 240 0.3 15 3 18 1 1.5;
110 0.547 240 0.3 15 1 9 2 1.5];
0 1.318 300 0.1 15 2 18 1 2];
T=[54248 162787 168380 314797;
28614 63958 69637 82898;
86002 402710 644415 328084;
230802 445102 362823 335913;
60257 127892 76753 73541;
34615 93532 80762 110049;
56783 172907 164548 144040];
@907 117437 120368 130179];
m=max(max(P));
n=max(max(T));
P=P'/m;
T=T'/n;
%-------------------------------------------------------------------------%
pr(1:9,1)=0; %输入矢量的取值范围矩阵
pr(1:9,2)=1;
bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm');
%建立BP神经网络, 12个隐层神经元,4个输出神经元
%tranferFcn属性 'logsig' 隐层采用Sigmoid传输函数
%tranferFcn属性 'logsig' 输出层采用Sigmoid传输函数
%trainFcn属性 'traingdx' 自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数
%learn属性 'learngdm' 附加动量因子的梯度下降学习函数
net.trainParam.epochs=1000;%允许最大训练步数2000步
net.trainParam.goal=0.001; %训练目标最小误差0.001
net.trainParam.show=10; %每间隔100步显示一次训练结果
net.trainParam.lr=0.05; %学习速率0.05
bpnet=train(bpnet,P,T);
%-------------------------------------------------------------------------
p=[110 1.318 300 0.1 15 2 18 1 2];
p=p'/m;
r=sim(bpnet,p);
R=r'*n;
display(R);

运行的结果是出现这样的界面

点击performance,training state,以及regression分别出现下面的界面

再搜索,发现可以通过神经网络工具箱来创建神经网络,比较友好的GUI界面,在输入命令里面输入nntool,就可以开始了。

点击import之后就出现下面的具体的设置神经网络参数的对话界面,
这是输入输出数据的对话窗

首先是训练数据的输入

然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等

点击view,可以看到这是神经网络的可视化直观表达

创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果

阅读全文

与matlab神经网络工具箱该如何安装相关的资料

热点内容
阀门上面有个正方形图例是什么 浏览:848
生产加工五金制品的人叫什么 浏览:884
机械优先加什么 浏览:722
电动工具是看转速还是看瓦 浏览:477
制冷机品牌中有个顿字的叫什么 浏览:48
制冷量1KW等于多少冷冻水量 浏览:759
自来水水表阀门坏了怎么办 浏览:353
焦耳实验装置原理 浏览:931
超声波加湿器怎么安装视频 浏览:764
洗牙器仪器是什么原理 浏览:542
氧气阀门制造标准 浏览:230
怎么登qq不要设备 浏览:730
高浓度硫化氢用什么阀门 浏览:285
脚踏缝纫机轴承坏了什么症状 浏览:902
昂克赛拉右前平面换轴承多少钱 浏览:739
仪表盘救命灯亮了怎么解决 浏览:709
为什么电动车前轮轴承老是坏 浏览:584
青岛高压阀门有限公司怎么样 浏览:621
机械表如何入手 浏览:64
中国激光设备在哪里 浏览:143