『壹』 matlab 工具箱应安装到哪呀
哦这个比较简单
现将那个工具箱解压到d:\program
files\matlab\r2008a\toolbox路径自己根据安装回情况修改
再启动matlab——》答file——》set
path——》all
with
subfolders——》选择你刚才解压的那个工具箱——》确定——》点击左下角的save——》colse——》重启matlab
就好了
%by
dynamic
%see
also
http://www.matlabsky.com
%contact
me
[email protected]
%2009.2.
%
『贰』 如何使用matlab中的工具箱
1、我们首先给出对应的拟合数据:
>> x=1:100;
>> y=2*x;
一条直线。
『叁』 如何使用matlab中的工具箱
如果是系统自带的,你可以直接用,如果是外部的或者是自编的你需要先把文件夹拷贝到tools文件夹下,再设置路径。
Matlab常用工具箱介绍(英汉对照)
Matlab Main Toolbox——matlab主工具箱
Control System Toolbox——控制系统工具箱
Communication Toolbox——通讯工具箱
Financial Toolbox——财政金融工具箱
System Identification Toolbox——系统辨识工具箱
Fuzzy Logic Toolbox——模糊逻辑工具箱
Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱
Image Processing Toolbox——图象处理工具箱
LMI Control Toolbox——线性矩阵不等式工具箱
Model predictive Control Toolbox——模型预测控制工具箱
μ-Analysis and Synthesis Toolbox——μ分析工具箱
Neural Network Toolbox——神经网络工具箱
Optimization Toolbox——优化工具箱
Partial Differential Toolbox——偏微分方程工具箱
Robust Control Toolbox——鲁棒控制工具箱
Signal Processing Toolbox——信号处理工具箱
Spline Toolbox——样条工具箱
Statistics Toolbox——统计工具箱
Symbolic Math Toolbox——符号数学工具箱
Simulink Toolbox——动态仿真工具箱
System Identification Toolbox——系统辨识工具箱
Wavele Toolbox——小波工具箱
例如:控制系统工具箱包含如下功能:
连续系统设计和离散系统设计
状态空间和传递函数以及模型转换
时域响应(脉冲响应、阶跃响应、斜坡响应)
频域响应(Bode图、Nyquist图)
根轨迹、极点配置
较为常见的matlab控制箱有:
控制类:
控制系统工具箱(control systems toolbox)
系统识别工具箱(system identification toolbox)
鲁棒控制工具箱(robust control toolbox)
神经网络工具箱(neural network toolbox)
频域系统识别工具箱(frequency domain system identification toolbox)
模型预测控制工具箱(model predictive control toolbox)
多变量频率设计工具箱(multivariable frequency design toolbox)
信号处理类:
信号处理工具箱(signal processing toolbox)
滤波器设计工具箱(filter design toolbox)
通信工具箱(communication toolbox)
小波分析工具箱(wavelet toolbox)
高阶谱分析工具箱(higher order spectral analysis toolbox)
其它工具箱:
统计工具箱(statistics toolbox)
数学符号工具箱(symbolic math toolbox)
定点工具箱(fixed-point toolbox)
射频工具箱(RF toolbox)
1990年,MathWorks软件公司为Matlab提供了新的控制系统模型化图形输入与仿真工具,并命名为Simulab,使得仿真软件进入了模型化图形组态阶段,1992年正式命名为Simulink,即simu(仿真)和link(连接)。matlab7.0里的simulink为6.0版本,matlab6.5里的simulink为5.0版本。
MATLAB的SIMULINK子库是一个建模、分析各种物理和数学系统的软件,它用框图表示系统的各个环节,用带方向的连线表示各环节的输入输出关系。
启动SIMULINK十分容易,只需在MATLAB的命令窗口键入“SIMULINK”命令,此时出现一个SIMULINK窗口,包含七个模型库,分别是信号源库、输出库、离散系统库、线性系统库、非线性系统库及扩展系统库。
1.信号源库
包括阶跃信号、正弦波、白噪声、时钟、常值、文件、信号发生器等各种信号源,其中信号发生器可产生正弦波、方波、锯齿波、随机信号等波形。
2.输出库
包括示波器仿真窗口、MATLAB工作区、文件等形式的输出。
3.离散系统库
包括五种标准模式:延迟,零-极点,滤波器,离散传递函数,离散状态空间。
4.线性系统库
提供七种标准模式:加法器、比例环节、积分环节、微分环节、传递函数、零-极点、状态空间。
5.非线性系统库
提供十三种常用标准模式:绝对值、乘法、函数、回环特性、死区特性、斜率、继电器特性、饱和特性、开关特性等。
6.系统连接库包括输入、输出、多路转换等模块,用于连接其他模块。
7.系统扩展库
考虑到系统的复杂性,SIMULINK另提供十二种类型的扩展系统库,每一种又有多种模型供选择。
使用时只要从各子库中取出模型,定义好模型参数,将各模型连接起来,然后设置系统参数,如仿真时间、仿真步长、计算方法等。SIMULINK提供了Euler、RungeKutta、Gear、Adams及专用于线性系统的LinSim算法,用户根据仿真要求选择适当的算法。
当然,不同版本的Matlab/Simulink内容有所不同。
另外,Simulink还提供了诸如航空航天、CDMA、DSP、机械、电力系统等专业模块库,给快速建模提供了很大的便利。
『肆』 用matlab进行频谱分析应该用什么工具箱
1、采样数据导入matlab
。
采样数据的导入至少有三种方法。
第一就是手动将数据整理成matlab支持的格式,这种方法仅适用于数据量比较小的采样。
第二种方法是使用matlab的可视化交互操作,具体操作步骤为:file
-->
import
data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不是太大的数据。
第三种方法,使用文件读入命令。数据文件读入命令有textread、fscanf、load等,如采样数据保存在txt文件中,则推荐使用
textread命令。如[a,b]=textread('data.txt','%f%*f%f');
这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于c语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。
2、对采样数据进行频谱分析
。
频谱分析自然要使用快速傅里叶变换fft了,对应的命令即
fft
,简单使用方法为:y=fft(b,n),其中b即是采样数据,n为fft数据采样个数。一般不指定n,即简化为y=fft(b)。y即为fft变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。典型频谱分析m程序举例如下:
clc
fs=100;
t=[0:1/fs:100];
n=length(t)-1;%减1使n为偶数
%频率分辨率f=1/t=fs/n
p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)...
+0.5*sin(1.8*2*pi*t)+0.9*sin(2.2*2*pi*t);
%上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析
figure(1)
plot(t,p);
grid
on
title('信号
p(t)');
xlabel('t')
ylabel('p')
y=fft(p);
magy=abs(y(1:1:n/2))*2/n;
f=(0:n/2-1)'*fs/n;
figure(2)
%plot(f,magy);
h=stem(f,magy,'fill','--');
set(h,'markeredgecolor','red','marker','*')
grid
on
title('频谱图
(理想值:[0.48hz,1.3]、[0.52hz,2.1]、[0.53hz,1.1]、[1.8hz,0.5]、[2.2hz,0.9])
');
xlabel('f
(hz)')
ylabel('幅值')
对于现实中的情况,采样频率fs一般都是由采样仪器决定的,即fs为一个给定的常数;另一方面,为了获得一定精度的频谱,对频率分辨率f有一个人为的规定,一般要求f<0.01,即采样时间ts>100秒;由采样时间ts和采样频率fs即可决定采样数据量,即采样总点数n=fs*ts。这就从理论上对采样时间ts和采样总点数n提出了要求,以保证频谱分析的精准度。
『伍』 Matlab nftool工具箱
nftool 用一个回归的例子入门一下然后和采用回归分析的结果比较学习很快的
『陆』 用matlab中工具箱进行小波去噪步骤
matlab读取excel文件比较方便,建议抄你把数据放到xls文件中保存,然后在matlab中用xlsread这个函数读取出来。
读取出的数据应该是一个一维数组了,用plot画出图的话,就是常见的曲线。
然后做小波分解:选用你觉得合适的小波基,例如haar,然后用这个小波基做小波分解,再把高频部分去掉,然后用低频部分还原,就得到了去噪后的信号。
其实你这个问题估计也可以用神经网络或者其它曲线拟合一类手段来解决。具体的情况要根据数据特征来判断。
以上。
专业路过的老狼
『柒』 matlab里有什么工具箱,可以用FFT(快速傅立叶变换)做频谱分析
1、采样数据导入Matlab 。
采样数据的导入至少有三种方法。
第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。
第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File --> Import Data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不是太大的数据。
第三种方法,使用文件读入命令。数据文件读入命令有textread、fscanf、load等,如采样数据保存在txt文件中,则推荐使用 textread命令。如[a,b]=textread('data.txt','%f%*f%f'); 这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于C语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。
2、对采样数据进行频谱分析 。
频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即 fft ,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。一般不指定N,即简化为Y=fft(b)。Y即为FFT变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。典型频谱分析M程序举例如下: clc fs=100;
t=[0:1/fs:100];
N=length(t)-1;%减1使N为偶数 %频率分辨率F=1/t=fs/N
p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)... +0.5*sin(1.8*2*pi*t)+0.9*sin(2.2*2*pi*t);
%上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析
figure(1) plot(t,p); grid on
title('信号 p(t)'); xlabel('t') ylabel('p') Y=fft(p);
magY=abs(Y(1:1:N/2))*2/N; f=(0:N/2-1)'*fs/N; figure(2)
%plot(f,magY);
h=stem(f,magY,'fill','--');
set(h,'MarkerEdgeColor','red','Marker','*') grid on
title('频谱图 (理想值:[0.48Hz,1.3]、[0.52Hz,2.1]、[0.53Hz,1.1]、[1.8Hz,0.5]、[2.2Hz,0.9]) '); xlabel('f (Hz)') ylabel('幅值')
对于现实中的情况,采样频率fs一般都是由采样仪器决定的,即fs为一个给定的常数;另一方面,为了获得一定精度的频谱,对频率分辨率F有一个人为的规定,一般要求F<0.01,即采样时间ts>100秒;由采样时间ts和采样频率fs即可决定采样数据量,即采样总点数N=fs*ts。这就从理论上对采样时间ts和采样总点数N提出了要求,以保证频谱分析的精准度。
『捌』 matlab中kriging工具箱用法
% xn, yn, zn - coordinates of the input data
代表输入的变量 xn, yn, zn 是输入数据的空回间坐标答
xp, yp, zp 是输出kriging点的坐标
『玖』 matlab之语音处理与合成工具箱有没有中文版本
你可以试试这个语音合成助手,不懂版可以看权这个http://jingyan..com/article/e9fb46e1606b6a7521f76699.html