导航:首页 > 五金知识 > 神经网络模式识别工具箱

神经网络模式识别工具箱

发布时间:2022-03-26 05:45:24

① 直接用神经网络工具箱构建bp神经网络,希望能给个例子说明,有注解最好,本人matlab新手,谢谢

BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层专前馈网络,是目前应用属最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。


附件就是利用神经网络工具箱构建BP神经网络进行预测的实例。如果要用可视化工具,可以在命令窗口输入nntool.

② bp神经网络 matlab 工具箱怎么调出来

有神经网络的工具箱,bp是配出来的!

③ matlabBP神经网络工具箱,可以调整隐含层节点数嘛

Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知回器、线性网络、答BP网络、径向基函数网络、竞争型神经网络、自组织网络和学习向量量化网络、反馈网络BP神经网络具有很强的映射能力,主要用于模式识别分类、函数逼近、函数压缩等。下面通过实例来说明BP网络在函数逼近方面的应用需要逼近的函数是f(x)=1+sin(k*pi/2*x),其中,选择k=2进行仿真,设置隐藏层神经元数目为n,n可以改变,便于后面观察隐藏层节点与函数逼近能力的关系。

④ 请高手 matlab bp神经网络工具箱

我是开发的
请高手

⑤ matlab怎么打开神经网络工具箱

在命令窗口输入nnstart,即可出现神经网络的GUI界面

⑥ 用matlab的神经网络工具箱(nntool命令打开的窗口化工具)做bp神经网络时怎么生成误差曲

训练结束后,训练窗口里有一个plot区域,点击performance按钮,就能弹出误差曲线下降图。内

BP(Back Propagation)神经网络是86年由容Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

⑦ matlab中bp神经网络的工具箱怎么用,不要matlab程序,就工具箱怎么实现问题的解决

matlab中神经网络的工具箱:输入nntool,就会弹出一个对话框,然后你就可以根据弹出框的指示来操作。

⑧ matlab神经网络分类工具,神经网络模式识别工具这两个是不是差不多的。

的确,这两个是相通的。模式识别(英语:Pattern Recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别、语音识别系统。

⑨ 如何用MATLAB的神经网络工具箱实现三层BP网络

这是一个来自<神经网络之家>nnetinfo的例子,在matlab2012b运行后的确可以,因为网络知道的文本宽度不够,注释挤到第二行了,有些乱,楼主注意区分哪些是代码哪些是注释,
x1 =
[-3,-2.7,-2.4,-2.1,-1.8,-1.5,-1.2,-0.9,-0.6,-0.3,0,0.3,0.6,0.9,1.2,1.5,1.8]; %x1:x1 = -3:0.3:2;
x2 =
[-2,-1.8,-1.6,-1.4,-1.2,-1,-0.8,-0.6,-0.4,-0.2,-2.2204,0.2,0.4,0.6,0.8,1,1.2];%x2:x2 = -2:0.2:1.2;
y = [0.6589,0.2206,-0.1635,-0.4712,-0.6858,-0.7975,-0.8040,...

-0.7113,-0.5326,-0.2875
,0,0.3035,0.5966,0.8553,1.0600,1.1975,1.2618]; %y:
y = sin(x1)+0.2*x2.*x2;
inputData = [x1;x2]; %将x1,x2作为输入数据

outputData = y; %将y作为输出数据

%使用用输入输出数据(inputData、outputData)建立网络,

%隐节点个数设为3.其中隐层、输出层的传递函数分别为tansig和purelin,使用trainlm方法训练。
net = newff(inputData,outputData,3,{'tansig','purelin'},'trainlm');

%设置一些常用参数
net.trainparam.goal = 0.0001;
%训练目标:均方误差低于0.0001
net.trainparam.show = 400; %每训练400次展示一次结果
net.trainparam.epochs = 15000;
%最大训练次数:15000.
[net,tr] = train(net,inputData,outputData);%调用matlab神经网络工具箱自带的train函数训练网络
simout = sim(net,inputData);
%调用matlab神经网络工具箱自带的sim函数得到网络的预测值
figure; %新建画图窗口窗口
t=1:length(simout);
plot(t,y,t,simout,'r')%画图,对比原来的y和网络预测的y

⑩ matlab神经网络工具箱具体怎么用

为了看懂师兄的文章中使用的方法,研究了一下神经网络
昨天花了一天的时间查怎么写程序,但是费了半天劲,不能运行,网络知道里倒是有一个,可以运行的,先贴着做标本

% 生成训练样本集
clear all;
clc;
P=[110 0.807 240 0.2 15 1 18 2 1.5;
110 2.865 240 0.1 15 2 12 1 2;
110 2.59 240 0.1 12 4 24 1 1.5;
220 0.6 240 0.3 12 3 18 2 1;
220 3 240 0.3 25 3 21 1 1.5;
110 1.562 240 0.3 15 3 18 1 1.5;
110 0.547 240 0.3 15 1 9 2 1.5];
0 1.318 300 0.1 15 2 18 1 2];
T=[54248 162787 168380 314797;
28614 63958 69637 82898;
86002 402710 644415 328084;
230802 445102 362823 335913;
60257 127892 76753 73541;
34615 93532 80762 110049;
56783 172907 164548 144040];
@907 117437 120368 130179];
m=max(max(P));
n=max(max(T));
P=P'/m;
T=T'/n;
%-------------------------------------------------------------------------%
pr(1:9,1)=0; %输入矢量的取值范围矩阵
pr(1:9,2)=1;
bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm');
%建立BP神经网络, 12个隐层神经元,4个输出神经元
%tranferFcn属性 'logsig' 隐层采用Sigmoid传输函数
%tranferFcn属性 'logsig' 输出层采用Sigmoid传输函数
%trainFcn属性 'traingdx' 自适应调整学习速率附加动量因子梯度下降反向传播算法训练函数
%learn属性 'learngdm' 附加动量因子的梯度下降学习函数
net.trainParam.epochs=1000;%允许最大训练步数2000步
net.trainParam.goal=0.001; %训练目标最小误差0.001
net.trainParam.show=10; %每间隔100步显示一次训练结果
net.trainParam.lr=0.05; %学习速率0.05
bpnet=train(bpnet,P,T);
%-------------------------------------------------------------------------
p=[110 1.318 300 0.1 15 2 18 1 2];
p=p'/m;
r=sim(bpnet,p);
R=r'*n;
display(R);

运行的结果是出现这样的界面

点击performance,training state,以及regression分别出现下面的界面

再搜索,发现可以通过神经网络工具箱来创建神经网络,比较友好的GUI界面,在输入命令里面输入nntool,就可以开始了。

点击import之后就出现下面的具体的设置神经网络参数的对话界面,
这是输入输出数据的对话窗

首先是训练数据的输入

然后点击new,创建一个新的神经网络network1,并设置其输入输出数据,包括名称,神经网络的类型以及隐含层的层数和节点数,还有隐含层及输出层的训练函数等

点击view,可以看到这是神经网络的可视化直观表达

创建好了一个network之后,点击open,可以看到一个神经网络训练,优化等的对话框,选择了输入输出数据后,点击train,神经网络开始训练,如右下方的图,可以显示动态结果

下面三个图形则是点击performance,training state以及regression而出现的

下面就是simulate,输入的数据是用来检验这个网络的数据,output改一个名字,这样就把输出数据和误差都存放起来了

在主界面上点击export就能将得到的out结果输入到matlab中并查看

下图就是输出的两个outputs结果

还在继续挖掘,to be continue……

阅读全文

与神经网络模式识别工具箱相关的资料

热点内容
实验室回流冷凝器装置图6 浏览:553
电热水器红色阀门是什么意思 浏览:211
icloud怎么退出旧设备 浏览:892
燃气灶空气阀门图片大全 浏览:902
四川自动泄压装置 浏览:577
hcl尾气处理实验装置 浏览:592
化工装置投资多大需要委托设计 浏览:732
天然气热水器用过之后用不用关闭燃气阀门 浏览:189
中华v3仪表盘怎么设置自检 浏览:818
轴承精车刀具怎么检验 浏览:581
墙壁上的阀门怎么更换 浏览:830
甲基橙制备实验装置 浏览:743
固体自动加料计量装置 浏览:345
实验装置的安装 浏览:10
平开窗五金件价格 浏览:825
摩擦轴承怎么分 浏览:958
机械装置及原理图 浏览:646
天籁地暖的阀门怎么开 浏览:353
电饭锅老牌子机械有什么 浏览:533
自喷管道湿报阀后阀门均加锁具至开启位置 浏览:336