导航:首页 > 五金知识 > matlab鲁棒控制工具箱

matlab鲁棒控制工具箱

发布时间:2022-03-07 18:05:02

⑴ 如何使用MATLAB仪器与控制工具箱

首先确认 0 7这两个参数 也就是Agilent Technologies board index 和 instrument at primary address 板好和地址设置正确 通过GPIB连接的仪器,如果你专用一个软件和它建立通属信 那么它的连接通道已经被占,其他软件就连不上它了

⑵ matlab中的系统辨识工具箱中中n4sid是针对开环系统的输入输出数据的吗

如果是系统自带的,你可以直接用,如果是外部的或者是自编的你需要先把文件夹拷贝到tools文件夹下,再设置路径。
Matlab常用工具箱介绍(英汉对照)
Matlab Main Toolbox——matlab主工具箱
Control System Toolbox——控制系统工具箱
Communication Toolbox——通讯工具箱
Financial Toolbox——财政金融工具箱
System Identification Toolbox——系统辨识工具箱
Fuzzy Logic Toolbox——模糊逻辑工具箱
Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱
Image Processing Toolbox——图象处理工具箱
LMI Control Toolbox——线性矩阵不等式工具箱
Model predictive Control Toolbox——模型预测控制工具箱
μ-Analysis and Synthesis Toolbox——μ分析工具箱
Neural Network Toolbox——神经网络工具箱
Optimization Toolbox——优化工具箱
Partial Differential Toolbox——偏微分方程工具箱
Robust Control Toolbox——鲁棒控制工具箱
Signal Processing Toolbox——信号处理工具箱
Spline Toolbox——样条工具箱
Statistics Toolbox——统计工具箱
Symbolic Math Toolbox——符号数学工具箱
Simulink Toolbox——动态仿真工具箱
System Identification Toolbox——系统辨识工具箱
Wavele Toolbox——小波工具箱

例如:控制系统工具箱包含如下功能:
连续系统设计和离散系统设计
状态空间和传递函数以及模型转换
时域响应(脉冲响应、阶跃响应、斜坡响应)
频域响应(Bode图、Nyquist图)
根轨迹、极点配置

较为常见的matlab控制箱有:

控制类:

控制系统工具箱(control systems toolbox)
系统识别工具箱(system identification toolbox)
鲁棒控制工具箱(robust control toolbox)
神经网络工具箱(neural network toolbox)
频域系统识别工具箱(frequency domain system identification toolbox)
模型预测控制工具箱(model predictive control toolbox)
多变量频率设计工具箱(multivariable frequency design toolbox)

信号处理类:
信号处理工具箱(signal processing toolbox)
滤波器设计工具箱(filter design toolbox)
通信工具箱(communication toolbox)
小波分析工具箱(wavelet toolbox)
高阶谱分析工具箱(higher order spectral analysis toolbox)

其它工具箱:
统计工具箱(statistics toolbox)
数学符号工具箱(symbolic math toolbox)
定点工具箱(fixed-point toolbox)
射频工具箱(RF toolbox)

⑶ 我的matlab里怎么没有mixsyn,augw命令,是鲁棒控制工具箱里的

没有的话就是没装这个工具箱呗。

⑷ 用simulink怎么设计鲁棒控制器 s函数

这个问题的解决,我认为使用S函数是比较方便的。
可以吧S函数对应模块的输入设置为2个,然后根据输入值的情况,判断输出值为哪一个输入。简单的判断分支语句。 如果对S函数不太熟悉,可以使用Matlab自带的S函数(level_1)模板来写。应该不难。

⑸ MATLAB里的Toolboxes怎么使用急求高手指点!!!

MATLAB工具箱介绍
有三十多个工具箱大致可分为两类:功能型工具箱和领域型工具箱。
功能型工具箱主要用来扩充MATLAB的符号计算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,能用于多种学科。
领域型工具箱是专业性很强的。如图像处理工具箱(Image Processing Toolbox)、控制工具箱(Control Toolbox)、信号处理工具箱(Signal Processing Toolbox)等。下面,将MATLAB工具箱内所包含的主要内容做简要介绍:

1) 图像处理工具箱(Image Processing Toolbox)。
* 二维滤波器设计和滤波
* 图像恢复增强
* 色彩、集合及形态操作
* 二维变换
* 图像分析和统计
可由结构图直接生成可应用的C语言源代码。
2)控制系统工具箱(Control System Toolbox)。
鲁连续系统设计和离散系统设计
* 状态空间和传递函数
* 模型转换
* 频域响应:Bode图、Nyquist图、Nichols图
* 时域响应:冲击响应、阶跃响应、斜波响应等
* 根轨迹、极点配置、LQG
3)财政金融工具箱(FinancialTooLbox)。
* 成本、利润分析,市场灵敏度分析
* 业务量分析及优化
* 偏差分析
* 资金流量估算
* 财务报表
4)频率域系统辨识工具箱(Frequency Domain System ldentification Toolbox
* 辨识具有未知延迟的连续和离散系统
* 计算幅值/相位、零点/极点的置信区间
* 设计周期激励信号、最小峰值、最优能量诺等
5)模糊逻辑工具箱(Fuzzy Logic Toolbox)。
* 友好的交互设计界面
* 自适应神经—模糊学习、聚类以及Sugeno推理
* 支持SIMULINK动态仿真
* 可生成C语言源代码用于实时应用
(6)高阶谱分析工具箱(Higher—Order SpectralAnalysis Toolbox
* 高阶谱估计
* 信号中非线性特征的检测和刻画
* 延时估计
* 幅值和相位重构
* 阵列信号处理
* 谐波重构
(7) 通讯工具箱(Communication Toolbox)。
令提供100多个函数和150多个SIMULINK模块用于通讯系统的仿真和分析
——信号编码
——调制解调
——滤波器和均衡器设计
——通道模型
——同步
(8)线性矩阵不等式控制工具箱(LMI Control Toolbox)。
* LMI的基本用途
* 基于GUI的LMI编辑器
* LMI问题的有效解法
* LMI问题解决方案
(9)模型预测控制工具箱(ModelPredictive Control Toolbox
* 建模、辨识及验证
* 支持MISO模型和MIMO模型
* 阶跃响应和状态空间模型

(10)u分析与综合工具箱(u-Analysis and Synthesis Toolbox)
* u分析与综合
* H2和H无穷大最优综合
* 模型降阶
* 连续和离散系统
* u分析与综合理论

(11)神经网络工具箱(Neursl Network Toolbox)。
* BP,Hopfield,Kohonen、自组织、径向基函数等网络
* 竞争、线性、Sigmoidal等传递函数
* 前馈、递归等网络结构
* 性能分析及应用
(12)优化工具箱(Optimization Toolbox)。
* 线性规划和二次规划
* 求函数的最大值和最小位
* 多目标优化
* 约束条件下的优化
* 非线性方程求解
(13)偏微分方程工具箱(Partial DifferentialEquation Toolbox)。
* 二维偏微分方程的图形处理
* 几何表示
* 自适应曲面绘制,
* 有限元方法
(14)鲁棒控制工具箱(Robust Control Toolbox)。
* LQG/LTR最优综合
* H2和H无穷大最优综合
* 奇异值模型降阶
* 谱分解和建模
(15)信号处理工具箱(signal Processing Toolbox)
* 数字和模拟滤波器设计、应用及仿真
* 谱分析和估计
* FFT,DCT等变换
* 参数化模型
(16)样条工具箱(SPline Toolbox)。
* 分段多项式和B样条
* 样条的构造
* 曲线拟合及平滑
* 函数微分、积分
(17)统计工具箱(Statistics Toolbox)。
* 概率分布和随机数生成
* 多变量分析
* 回归分析
* 主元分析
* 假设检验
(18)符号数学工具箱(Symbolic Math Toolbox)。
* 符号表达式和符号矩阵的创建
* 符号微积分、线性代数、方程求解
* 因式分解、展开和简化
* 符号函数的二维图形
* 图形化函数计算器
(19)系统辨识工具箱(SystEm Identification Toolbox)
* 状态空间和传递函数模型
* 模型验证
* MA,AR,ARMA等
* 基于模型的信号处理
* 谱分析
(20)小波工具箱(Wavelet Toolbox)。
* 基于小波的分析和综合
* 图形界面和命令行接口
* 连续和离散小波变换及小波包
* 一维、二维小波
* 自适应去噪和压缩

⑹ 数学建模MATLAB工具箱是什么怎么用

Matlab工具箱已经成为一个系列产品,Matlab主工具箱和各种工具箱(toolbox )。
工具箱简介
1功能型工具箱 —— 通用型
功能型工具箱主要用来扩充Matlab的数值计算、符号运算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,能够用于多种学科。
2领域型工具箱 —— 专用型
领域型工具箱是学科专用工具箱,其专业性很强,比如控制系统工具箱( Control System Toolbox);信号处理工具箱(Signal Processing Toolbox);财政金融工具箱( Financial Toolbox)等等。只适用于本专业。

3
Matlab常用工具箱
Matlab Main Toolbox——matlab主工具箱
Control System Toolbox——控制系统工具箱
Communication Toolbox——通讯工具箱
Financial Toolbox——财政金融工具箱
System Identification Toolbox——系统辨识工具箱
Fuzzy Logic Toolbox——模糊逻辑工具箱
Bioinformatics Toolbox——生物分析工具箱
Image Processing Toolbox——图象处理工具箱
Database Toolbox——数据库工具箱
Model predictive Control Toolbox——模型预测控制工具箱
Neural Network Toolbox——神经网络工具箱
Optimization Toolbox——优化工具箱
Partial Differential Toolbox——偏微分方程工具箱
Robust Control Toolbox——鲁棒控制工具箱
Signal Processing Toolbox——信号处理工具箱
Spline Toolbox——样条工具箱
Statistics Toolbox——统计工具箱
Symbolic Math Toolbox——符号数学工具箱
Simulink Toolbox——动态仿真工具箱
Virtual Reality Toolbox——虚拟现实工具箱
Wavelet Toolbox——小波工具箱
等等…….
而且每个新出的版本都在增加、更新完善。

⑺ 如何使用matlab中的工具箱

如果是系统自带的,你可以直接用,如果是外部的或者是自编的你需要先把文件夹拷贝到tools文件夹下,再设置路径。
Matlab常用工具箱介绍(英汉对照)
Matlab Main Toolbox——matlab主工具箱
Control System Toolbox——控制系统工具箱
Communication Toolbox——通讯工具箱
Financial Toolbox——财政金融工具箱
System Identification Toolbox——系统辨识工具箱
Fuzzy Logic Toolbox——模糊逻辑工具箱
Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱
Image Processing Toolbox——图象处理工具箱
LMI Control Toolbox——线性矩阵不等式工具箱
Model predictive Control Toolbox——模型预测控制工具箱
μ-Analysis and Synthesis Toolbox——μ分析工具箱
Neural Network Toolbox——神经网络工具箱
Optimization Toolbox——优化工具箱
Partial Differential Toolbox——偏微分方程工具箱
Robust Control Toolbox——鲁棒控制工具箱
Signal Processing Toolbox——信号处理工具箱
Spline Toolbox——样条工具箱
Statistics Toolbox——统计工具箱
Symbolic Math Toolbox——符号数学工具箱
Simulink Toolbox——动态仿真工具箱
System Identification Toolbox——系统辨识工具箱
Wavele Toolbox——小波工具箱

例如:控制系统工具箱包含如下功能:
连续系统设计和离散系统设计
状态空间和传递函数以及模型转换
时域响应(脉冲响应、阶跃响应、斜坡响应)
频域响应(Bode图、Nyquist图)
根轨迹、极点配置

较为常见的matlab控制箱有:

控制类:

控制系统工具箱(control systems toolbox)
系统识别工具箱(system identification toolbox)
鲁棒控制工具箱(robust control toolbox)
神经网络工具箱(neural network toolbox)
频域系统识别工具箱(frequency domain system identification toolbox)
模型预测控制工具箱(model predictive control toolbox)
多变量频率设计工具箱(multivariable frequency design toolbox)

信号处理类:
信号处理工具箱(signal processing toolbox)
滤波器设计工具箱(filter design toolbox)
通信工具箱(communication toolbox)
小波分析工具箱(wavelet toolbox)
高阶谱分析工具箱(higher order spectral analysis toolbox)

其它工具箱:
统计工具箱(statistics toolbox)
数学符号工具箱(symbolic math toolbox)
定点工具箱(fixed-point toolbox)
射频工具箱(RF toolbox)

1990年,MathWorks软件公司为Matlab提供了新的控制系统模型化图形输入与仿真工具,并命名为Simulab,使得仿真软件进入了模型化图形组态阶段,1992年正式命名为Simulink,即simu(仿真)和link(连接)。matlab7.0里的simulink为6.0版本,matlab6.5里的simulink为5.0版本。

MATLAB的SIMULINK子库是一个建模、分析各种物理和数学系统的软件,它用框图表示系统的各个环节,用带方向的连线表示各环节的输入输出关系。
启动SIMULINK十分容易,只需在MATLAB的命令窗口键入“SIMULINK”命令,此时出现一个SIMULINK窗口,包含七个模型库,分别是信号源库、输出库、离散系统库、线性系统库、非线性系统库及扩展系统库。
1.信号源库
包括阶跃信号、正弦波、白噪声、时钟、常值、文件、信号发生器等各种信号源,其中信号发生器可产生正弦波、方波、锯齿波、随机信号等波形。
2.输出库
包括示波器仿真窗口、MATLAB工作区、文件等形式的输出。
3.离散系统库
包括五种标准模式:延迟,零-极点,滤波器,离散传递函数,离散状态空间。
4.线性系统库
提供七种标准模式:加法器、比例环节、积分环节、微分环节、传递函数、零-极点、状态空间。
5.非线性系统库
提供十三种常用标准模式:绝对值、乘法、函数、回环特性、死区特性、斜率、继电器特性、饱和特性、开关特性等。
6.系统连接库包括输入、输出、多路转换等模块,用于连接其他模块。
7.系统扩展库
考虑到系统的复杂性,SIMULINK另提供十二种类型的扩展系统库,每一种又有多种模型供选择。
使用时只要从各子库中取出模型,定义好模型参数,将各模型连接起来,然后设置系统参数,如仿真时间、仿真步长、计算方法等。SIMULINK提供了Euler、RungeKutta、Gear、Adams及专用于线性系统的LinSim算法,用户根据仿真要求选择适当的算法。

当然,不同版本的Matlab/Simulink内容有所不同。

另外,Simulink还提供了诸如航空航天、CDMA、DSP、机械、电力系统等专业模块库,给快速建模提供了很大的便利。

⑻ 请问有知道鲁棒控制工具箱怎么用的吗,有相关的鲁棒控制在电机控制中的仿真程序更好,急需,谢谢

1.熟悉数学软件MatLab中Statistics工具箱里的各种密度函数和分布函数的作图命令并观看各种图形。
2.会用概率分布函数cdf求各种分布中的不同事件的概率,会用逆概率函数inv求各种分布的α分位点。
背景知识:统计工具箱简介
统计工具箱是一套建立于Matlab数值计算环境的统调分析工具.能够支持范围广泛的统计计算任务,提供工程和科学统计的基本能力。其中包括200各个M文件(函数),主要文持以下各方面的内容。
•概率分布——提供了20种概率分布类型,其中包括连续分布和离散分布,而且每种分布类型均给出5个有用的函数,即概率密度函数、累积分布因数、逆累积分布函数、随机数产生器和均值与方差计算函数。
•参数估计——依据特定分布的原始数据,可以计算分布参数的估计值及共置信区间。
•描述性统计——提供描述数据样本特征的函数,包括位置和散布的度量、分位数估计和处理数据缺夫情况的函数等。
•线性模型——针对线性模型,工具箱提供的函数涉及单因素方差分析、双因素方差分析、多重线性回归、逐步回归、响应曲面预测和岭回归等。
•非线性模型——为非线性模型提供的函数涉及参数估计、多维非线性拟合的交互预测和可视化以及参数和预计值的置信区间计算等。
假设检验——此间提供最通用的假设检验的函数:t检验和z检验。
多元统计——关于多元统计的函数有主成分分析和线性判别分析。
统计绘图——Matlab图形库中添加了box图、正东概率图、威布尔概率图分位数与分位数图等,另外还对多项式拟合和预测的支持进行扩展。
统计工序管理——可绘制通用的管理图和进行工序性能的研究。
试验设计——支持因子设计和D优化设计。
统计工具箱的函数主要分为两类
•数值计算函数
•交互式图形工具函数
前一类工具由—些函数组成,可以通过命令行或自己的应用程序来调用这些函数。其中很多函数为Matlab的M文件,这些文件由一系列实现特殊统计算注的语句构成。可使用下还语句查看这些函数的代码
type function_name
也可以将M文件拷贝下米,然后进行修改,形成按您所需要的算法进行计算的M文件,并将其添加到工具路中。
工具箱所提供的后一类工具是一些能够通过图形用户界面(Gui)来使用的交互式图形工具。这些基于Gui的工具间时也为多项式拟合和预测以及概率函数介发提供环境。
文中的函数参考或详解中包含各类函数使用的具体信息。对函数的描述包括函数调用格式、参数选项以及操作符的完整说明。许多函数说明中包括示例、函数算法的说明以及附加阅读材料的参考等等。
另外,统计工具箱中的函数所采用的数学符号符合以下惯例
线性模型中的参数
E(x) x的期望值,
f(x|a,b) 概率密度函数(x为独立变量,a、b为固定参数)
F(x|a,b) 累积分布函数
I[(a,b)] 指示(indicator)函数
P和q P为事件发生的概率,
q为事件不发生的概率,故P=1—q
概率密度函数
对于离散分布和连续分布,其相应的概率密度函数pdf(probility Density Function)
有各自不同的含义。
•离散型随机变量:它是只有有穷个或可数个可能值的随机变量,其概率密度函数是
观察到某特定值的概率。
•连续型随机变量:如果存在一非负函数p(x)>=0,使对于任意实数a<=b,x在区 间(a,b)上的取值的概率为
则函数p(x)称作X的概率密度函数,它满足
=1
与离散分布的pdf不同,其观察到果一特定值的概率为零
pdf具有两种性质:
pdf具有两种性质:
•对于每个可能的结果pdf为零或一正数
pdf对整个区间的积分为1。
pdf并非单一函数,而是由一个或多个参数所表征的函数族。一旦选定(或估计)了参数值,此函数才唯一确定。
在统计工具箱中,对每种分布的吵函数进行调用的格式是统一的*具体调用格式参见表
下面以正态分布为例,说明pdf函数调用方法。
举例
x=[—3:0.5:3];
f = normpdf(x,0,1)
f=
Columns l through 7
0.0044 0.0175 0.0540 0.1295 0.2420
0.3521 03989
Columns 8 through 13
0.352l 0.2420 0.1295 0.0540 0.0l 75 0.0044
pdf函数中的第一个参数提供所要计算其概率密度的点集(自变量x);其他参数提供能够唯一确定分布的参数值,正态分布需要两个参数:位置参数(均值u)和散度参数(标准差o )。上例中,计算结果变量f则包含了由参数0和1(u=0, =1)所确定的正态分布函数在x取值上的概率密度。
在函数调用时,其小的参数可能是标量(即数量)、矢量或矩阵,出此征给定参数时,需要注意这些参量的长度(或称尺寸、大小等)席该相匹配。例如, 分布的曲函数调用:P=
betacdf(X,A,B)。其市,x、A和B的长度要么相向(如,它们都是单个标量,或都为包含N个元素的矢量或N*M个元素的距阵);要么,其中有的参数(假设为)是单个标量,而其他参量为矢量或矩阵,则MatId自动将X扩展为与其他参量相同长度的矢量或矩阵,此矢
量或矩阵的元素均为常量x的佰。我们称这种自动操作方式为矢量扩展规则。
举例:
a=[0.5,0.5]
b=[0.5,1]
c=[0.5,1]
y=betapdf(a,b,c)
y=
0.6366 1.0000
a=[0.5 1; 2 4]
a=
0.5000 1.0000
2.0000 4.0000
y=betapdf(0.5 ,a,a)
y=
0.6366 1.0000
0.5000 2.1875
在其他类似函数中,也通常采用矢量扩展规则对各参量进行操作。以后不再一—赘述。
除了表中列出的特定分布的pdf函数外,统计工具箱还给出了通用的pdf调用函
数,凶数名即为pdf。
pdf
功能:可选分布的通用概率密度函数。
格式:Y=pdf(‘name’,X,Al,A2,A3)
说明:Y=pdf(‘name’,X,Al,A2,A3)提供了求取统计工具路中任一分布的概率密度值功
能。其中,‘na毗’为特定计布的名称,如‘Normal’、’Gamma’等。X为分
布函数的自变量x的取值矩阵,而A1、A2、A3分别为相应的分布参数值。注
意:由于各种分布所含参数不同,A1、A2、A3的含义各不相同,也并不一定
都是必须的;对于任一分布,A1、A2、A3的值具体如何给出,可参见相应分
布的特定概率密度函数。Y存放结果,为概率密度值距阵。
举例:p = pdf( ‘Norma1 ‘,一2:2,0,1)
p=
0.0540 0.2420 0.3989 0.2420 0.0540
p = pdf(‘Poi s son’ , 0:4,1:5)
p=
0.3679 0.2707 0.2240 0.1954 0.1755
函数betapdf()
功能:计算 分布的概率密度函数
语法:Y=betapdf(X,A,B)
说明:
Y=betapdf(A,B) 根据相应的参数A,B计算X中每个值的 分布概率密度。输入的向量或矩阵X,A,B必须形式相同。标量输入将被扩展成和其它输入具有相同维数
的常数短阵或数组。参数A,B必须全部为正,X中的值必须介于0和1之间。
分布概率密度计算。
a=[0.5 1;2 4]
a=
0.5000 1.0000
2.0000 4.0000
y=betapdf(0.5,a,a)
y=
0.6366 1.0000
1.5000 2.1875
函数binopdf ()
功能:计算二项分布的概率密度
语法:Y=binopdf(X,N,P)
说明:
Y=binopdf(X,N,P) 根据相应的参数N,P计算X中每个值的二项分布概率
密度。输入的向量或矩阵X,N,P必须形式相同。标量输入将被扩展成和其它输入具有相
同维数的常数矩阵或数组。参数N必须为正整数,P中的值必须在区间[0,1]上。
一个质量检验员每天检验500个零件。如果1%的零件有缺陷,一天内检验
员没有发现有缺陷零件的概率是多少?检验员发现有缺陷零件的数量最有可能是多少?
计算一天内检验员没有发现有缺陷零件的概率p:
p=binopdf(0,500,0.01)
p=
0. 0066
计算检验员发现有缺陷零件的数量:
y=binopdf([0:500],500,0.01);
[x,i]=max(y)
x=
0. 1764
i=
6
因为数组下标i=1时代表发现0个缺陷零件的概率,所以检验员发现有缺陷零件的
数量最有可能是i—l=5。
函数exppdf ()
功能:计算指数分布的概率密度函数
语法:Y=exppdf(X,MU)
说明:
Y=exppdf(X,MU) 根据相应的参数MU计算X中每个值的指数分布概率密
度。输入的向量或短阵X,MU必须形式相同。标量输入将被扩展成和其它输入具有相同
维数的常数矩薛或数组。参数MU必须为正数。
指数分布概率密度计算。
y=exppdf(8,1:8)
y=
0.0003 0.0092 0.0232 0.0338 O.0404 0.0439 0.0456 0.0460
y=exppdf(1:8,1:8)
y=
0.3679 0.1839 0.1226 0.0920 0.0736 0.0613 0.0526 0.0460
作图
画对数正态分布的概率密度图
x=(0:0.01:10);
y=lognpdf(x,0,1);
plot(x,y);grid;
xlabel(‘\itx’);ylabel(‘概率密度\itp’)
画负二项分布的概率密度图
x=(0:10);
y=nbinpdf(x,3,0.5);
plot(x,y,’k+’);
xlabel(‘\itx’);ylabel(‘概率密度\ity’);
set(gca,’Xlim’,[-0.5,10.5])
比较具有相同自由度(V=10)的非中心t分布(非中心参数DELTA=1)和
分布,如图所示。
x=(-5:0.1:5);
p1=nctpdf(x,10,1);
p=tpdf(x,10);
plot(x,p,'k:',x,p1,'k-')
xlabel('\itx');ylabel('概率密度\itp');
legend('t分布','非中心t分布');
x=(0.01:0.1:10.01);
p1=ncfpdf(x,5,20,10);
p=fpdf(x,5,20);
plot(x,p,'k--',x,p1,'k-');
xlabel('\itx');ylabel('概率密度\itp');
legend('F分布','非中心F分布');
例比较具有相同分子与分母自由度(分别为5和30)的非中心万分布(参数
=10)和F分布,如图1l 3所示。
累积分布因数与逆累积分布因数
连续型随机变量的累积分布函数cdf,亦称分布函数,完全取决于其概率密度P(x),数学表达式为
F(x)=
如果f是概率密度函数.则相应的累积分布函数(cdf)F为
F(x)=P(X<=x)=
累积分布函数F(x)表示所观察结果小于或等于x的概率。cdf具有两种性质:
•cdf值F(x)的范围为0一1;
.如果y >=x.则F(y)>=F(x)。
逆累积分布函数icdf返回给定显著概率条件下假设检验的临界位,实际上是cdf的逆函数。
公统计工具箱中,对每种分布的cdf和icdf函数(名称以inv结尾)进行调用的格式是统
一的 另外, 1:具稍提供了通用的累积分布函数cdf和逆累积分布面数icdf,说明如下。
cdf icdf
功能:计算可选分布的累积分布函数和逆累积分布函数。
格式:P=cdf(‘name’,X,A1,A2,A3)
X=icdf(‘name’,P,Al,A2.A3)
说明:P=cdf(‘name’ X,A1,A2,A3)与pdf函数的区别仅在于它是计算某种分布的累积分
布函数值,而不是概率密度值,其他用法与pdf函数相同。
X=icdf(‘name’,P,Al,A2,A3)为P=cdf(’name’,X,A1,A2,A3)的逆函数。
举例:p=cdf(‘Normal’,-2:2,0,1)
p=
0.0228 0.1587 0.500 0 0.84l 3 0.9772
p=cdf(‘Poisson’,0:5,1:6)
p=
0.3679 0.40 60 0.4232 0.4335 0.440 5 0.4457
x = icdf( ‘Normal’,0.1:0.2:0.9,0,1)
x=
-1.28l 6 -0.5244 0 0.5244 1.28l 6
x=icdf(‘Poisson’,0.1:0.2:0.9,1:5)
x=
1 1 3 5 8
下面说明正态分布的cdf函数调用方法
x=[--3:0.1:3];
p=normcdf(x,0,1);
共中,变量P包含出参数0和l所确定的正态分布函数在x中所取值上的累积分布函
数值。所用参数含义与pdf函数类同。
下面说明连续的累积分布函数(cdf)与其逆函数(icdf)的关系。
X= [-3:0.1:3];
xnew = norminv(normcdf(x,0,1), 0,1);
相反地,进行下述计算:
p = [0.1:0.1:0.9];
pnew = normcdf(norminv(p, 0,1),0,1)
请对照一下x与xnew和p与pnew,可以发现其中的规律。
连续分布中取值点的cdf计算值为。0~1的概率值,这些概率值的逆cdf则给出其原来
的取值点。
对于离散分布,cdf与其icdf的关系更为复杂些。因为很可能不存在某个值(设为x)
使得x的cdf为p.在这种情况下,其icdf返回使cdf(x)幸p的第一个值x’。如:
x = [0:10];
y = binoinv[binocdf(x,l 0,0.5), l 0, 0.5];
请对照—下x与y.
以下的命令说明了进行相反操作所同样存在的问题。
p = [0.1:0.2:0.9];
pnew = binocdf(binoinv(p,l 0, 0.5),l 0, 0.5)
Pnew =
0.1719 0.3770 0.6230 0.828l 0.9453
逆函数在假设检验和产生置信区间等工作中是很有用的。以下给出获得正态分布的99%置信区间的方法。
p= [0.00 5 0.9951
x = norminv(p, 0,l)
x=
-2.5758 2.5758
变量x中的值即为给定概率区间P的条件下,由参数0和1所确定的止态分布函数的逆函数的结果,p(2)-p(1)=0.99.因此,x给出了标准正态分布的99%置信区间。
逆累积分布函数
MATLAB的统计工具箱提供了21种逆累积分布函数,见下表

函数betainv()
功能:求 分布的逆累积分布函数
语法:X=betainv(P,A,B)
说明:
x=betainv(P,A,B) 计算P中概率值的 分布(参数为A和B)逆累积分布函数值。输入的向量或矩阵P,A,B必须形式相同。标量输入将被扩展成和其它输入具有相同维数的矩阵。参数A,B必须全部为正,P中的值必须位于区间[0,1]上。
给定概率P和参数a和b的户分布的逆累积分布值为

其中
B()为犀函数。输出结果x中每一个元素是这样一个值,它服从由参数为a和b定义的分布,且其累积分布值为P中相应的概率值。
计算P分布逆分布函数示例。
P=[0.01 0.5 0.991
x=betainv(p,10,5)
x=
0.3726 0.6742 0.8981
由上面的结果可以看出,对于参数a=10,b=5的雇分布,小于或等于0.3726的值出现的概率为0.0l。类似地,小于或等于0.6742和0.8981的值出现的概率为0.5和0.99。
函数binoitnv()
功能:求二项分布的逆累积分布函数
语法:x=binoinv(Y,N,P)
说明:
X=binoiv(Y,N,P) 退回二项累积分布值大于或等于Y的最小的整数值X。
可以认为Y是在N次重复独立试验中事件成功X次的概率,其中对于任意给定的一次试验成功的概率为P。X中的每个值都是小于或等于N的正整数。
输入的向量或短阵Y,N,P必须是形式相同。标量输入将被扩展成和其它输入具有相同维数的常数矩阵。参数N必须为正整数,P和Y中的值必须位于区间[0,1]上。
如果一个棒球队在一个赛季中有162场比赛,任意一场比赛获胜的机会都为50%.那么这支球队在一个赛季中获胜场次的合理范围为多少?假定不可思议的结果
10年才偶然出现一次。
binoinv([0.05 0.95],162,0.5)
ans=
71 91
结果表示这支球队在一个赛季中90%的范围内,获胜的场次在71和9l之间。
函数expinv()
功能:求指数分布的逆累积分布函数
语法;x=expinv(P,MU)
说明:
x=expinv(P,MU) 计算P中概率值的指数分布(参数为MU)逆累积分布值。
输入的向量或矩阵P,MU必须形式相同。标量输入将被扩展成和其它输入具有相同维数的常数矩阵。参数MU必须为正数,P中的值必须位于区间[0,1]上。
指数分布的逆累积分市函数定义为

结果x是表示这样一个值,它服从参数为 的指数分布且落在区间[0,x]上的概率为P。
假定灯泡的奉命服从参数 P=700明日数分布,那么灯泡寿命的中位数是多少?
expinv(0.50,700)
ans=
485.2030
因此,假定买了一箱灯泡,如果700小时是灯泡的平均寿命,那么一半灯泡将在不超过500小时时就会烧掉。
函数chi2inv()
功能;求 分布的逆累积分市函数
语法;X=chi2inv(P,V)
说明:
x=chi2inv(P,V) 计算P中概率值的 分布(参数为V)逆累积分布函数值。
输入的向量或矩阵P,V必须形式相同。标量输入将被扩展成和其它输入具有相同维数的常数矩阵。自由度参数V必须为正整数,P中的值必须位于区间[0,1]上。
给定概率P和自由度参数 的 分布的逆累积分布值为

其中
()为 函数。输出结果x中每一个元素是这样一个值,它服从由参数 定义的分布,且其累积分布值为P中相应的概率值。
例 找出一个超过95%样本值的数,其中样本服从自由度为10的 分布
x=chi2inv(0.95,10)
x=
18.3070
由上面的结果可以发现大于18.3的数只有5%的出现机会
函数morminv()
功能:计算正态分布的逆累积分布面数
语法:x=norminv(P,MU,SIGMA)
说明:
x=norminv(P,MU,SIGMA) 计算P中概率值的正态分布(参数为MU和SIGMA)逆累积分布函数值。输入的向量或矩阵P,MU和SIGMA必须形式相同。标量输入将被扩展成和其它输入具有相同维数的常数矩阵。SIGMA中的参数值必须为正数,
P中的值必须位于区间[0,1]上。
正态分布的逆累积分布函数定义为

其中

结果x为上面积分等式的解.其中P被赋予想得到的概率值。
例 找一个区间,使它包含95%的标准正态分布的值。
x=norminv([0.025 0.975],0,1)
x=
-1.9600 1.9600
注意区间x不是惟一符合条件的区间,但它是最小的。
x1=norminv([0.01 0.96],0,1)
x1=
-2.3263 1.7507
区间x1也包含了95%的概率值,但它要比x要大。
函数poissnv()
功能:计算泊松分布的逆累积分布函数
语法:x=poiesinv(P,LAMBDA)
说明:
X=poissinv(P,LAMBDA) 返回泊松累积分布值大于或等于P的最小的正整数X。输入的向量或矩阵P和LAMBDA必须形式相同,输出X也和它们形式相同。标量输入将被扩展成和其它输入具有相同继数的常数矩阵。参数LAMBDA必须为正数。
例 由某商店过去的销售记录知道,某种商品每月的销售数可以用岁数 =25的泊松分布来描述,为了有95%以上的把握不使商品脱销,问商店在每月月底应进该种商品多少件?
Poissinv(0.95,25)
ans=
33

阅读全文

与matlab鲁棒控制工具箱相关的资料

热点内容
液化气储气罐自动喷淋装置 浏览:454
内径8外径31厚7的是什么轴承 浏览:757
新福克斯仪表怎么设置 浏览:512
收设备款销项是多少 浏览:177
机械二尖瓣故障怎么办 浏览:223
轮胎胎面自动抬取装置 浏览:324
过氧化氢分解反应实验装置 浏览:546
冷库制冷机一天多少度电 浏览:48
obu设备是什么怎么供电 浏览:222
电脑里没有便携设备怎么办 浏览:874
常见能量装置控制的实验 浏览:562
无机结合料室仪器有哪些 浏览:174
暖气阀门的关闭 浏览:452
铸铁管道阀门井 浏览:667
管道阀门井图集设计 浏览:473
南通市启东市东成电动工具 浏览:112
机械迷城攻略第一关怎么过 浏览:581
监控器材中的枪机是什么 浏览:609
ug加工怎么选择机床型号 浏览:583
水阀门开关方向o与s是什么意思 浏览:308