1. matlab曲线拟合工具箱能做多元非线性回归分析吗只能写程序吗求方法!!
目前,Matlab还不能对多元非线性回归分析。只能用nlinfit函数,lsqcurvefit函数来拟合。其方回法:
x=[。。。];y=[。。。];
fun=inline('a(1)+a(2).*exp(x)','a','x');
a=lsqcurvefit(fun,[a01 a02],x,y)
或
a= nlinfit(x,y,fun,[a01 a02])
[a01 a02] 初值答
2. 如何使用matlab拟合工具箱
1.打开CFTOOL工具箱。
在Matlab 6.5以上的环境下,在左下方有一个"Start"按钮,如同Windows的开始菜单,点开它,在目录"Toolboxes"下有一个"Curve Fitting",点开"Curve Fitting Tool",出现数据拟合工具界面,基本上所有的数据拟合和回归分析都可以在这里进行。也可以在命令窗口中直接输入”cftool”,打开工具箱。
2.输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。 例如在命令行里输入下列数据: x = [196,186, 137, 136, 122, 122, 71, 71, 70, 33]; y = [0.012605; 0.013115; 0.016866; 0.014741; 0.022353; 0.019278; 0.041803; 0.038026; 0.038128; 0.088196];
3.数据的选取。
打开曲线拟合共工具界面,点击最左边的"Data..."按钮,出现一个Data对话框,在Data Sets页面里,在X Data选项中选取x向量,Y Data选项中选取y向量,如果两个向量的元素数相同,那么Create data set按钮就激活了,此时点击它,生成一个数据组,显示在下方Data Sets列表框中。关闭Data对话框。此时Curve Fitting Tool窗口中显示出这一数据组的散点分布图。
4.曲线拟合(幂函数power)。
点击Fitting...按钮,出现Fitting对话框,Fitting对话框分为两部分,上面为Fit Editor,下面为Table of Fits,有时候窗口界面比较小,Fit Editor部分会被收起来,只要把Table of Fits上方的横条往下拉就可以看见Fit Editor。在Fit Editor里面点击New Fit按钮,此时其下方的各个选框被激活,在Data Set选框中选中刚才建立的x-y数据组,然后在Type of fit选框中选取拟合或回归类型,各个类型的拟合或回归相应的分别是: Custom Equations 用户自定义函数 Expotential e指数函数 Fourier 傅立叶函数,含有三角函数 Gaussian 正态分布函数,高斯函数 Interpolant 插值函数,含有线性函数,移动平均等类型的拟合 Polynomial 多项式函数 Power 幂函数 Rational 有理函数(不太清楚,没有怎么用过) Smooth Spline (光滑插值或者光滑拟合,不太清楚) Sum of sin functions正弦函数类
在这个Type of fit选框中选择好合适的类型,并选好合适的函数形式。于是点击Apply按钮,就开始进行拟合或者回归了。此时在Curve Fitting Tool窗口上就会出现一个拟合的曲线。这就是所要的结果。 在上面的例子中,选择sum of sin functions中的第一个函数形式,点击Apply按钮,就可以看见拟合得到的正弦曲线。
3. matlab如何调用统计工具箱
调用统计特工具箱的做法:
①打开matlab;
②点击左下角Start;
③进入Toolbox工具箱;
④选择Statistics;
4. 如何用matlab线性回归分析
回归分析是处理两个及两个以上变量间线性依存关系的统计方法。可以通过软件Matlab实现。
在Matlab中,可以直接调用命令实现回归分析,
(1)[b,bint,r,rint,stats]=regress(y,x),其中b是回归方程中的参数估计值,bint是b的置信区间,r和rint分别表示残差及残差对应的置信区间。stats包含三个数字,分别是相关系数,F统计量及对应的概率p值。
(2)recplot(r,rint)作残差分析图。
(3)rstool(x,y)一种交互式方式的句柄命令。
5. 用matlab怎么做回归分析全部教程啊,各位亲啊
你可以查一下matlab的工具箱,应该有这个功能。而且回归分析有更专业的软件,不一定要用matlab 啊
6. matlab 如何做回归分析
最多30
7. matlab 画图 多元线性回归分析
Matlab中统计工具箱用命令regress实现多元线性回归,用的方法是最小二乘法,基本用法是:
b=regress(Y,X)
Y,X是因变量和自变量,b为回归系数的估计值。
当然,也可以让结果更详细,这个你可以自己查看帮助文档 doc regress
这里使用:
[b,bint,r,rint,stats]=regress(Y,X)
其中,bint为回归系数的置信区间,r,rint为残差及其置信区间,stats为计算回归模型的统计量。
所以,设房屋销售均价为Y,其余四个变量分别为X1,X2,X3,X4
则代码如下:
clc
clear
x=[];
Y=[];
X=[ones(length(x),1),x];
[b,bint,r,rint,stats]=regress(Y,X,0.05)
X,Y的数据你填进去就可以了。
8. 怎样用MATLAB进行回归分析
X=[1 1 4 6 8 11 14 17 21]'
Y=[2.49 3.30 3.68 12.20 27.04 61.10 108.80 170.90 275.50]'
X=[ones(9,1), X]
[b,bint,r,rint,stats]= regress(Y,X)
输出向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats是用于检验回归模型的统计量,有三个数值,第一个是R2,其中R是相关系数,第二个是F统计量值,第三个是与统计量F对应的概率P,当P<α时拒绝H0,回归模型成立。
9. 用Matlab中的regress工具箱求出GDP和人口的多元回归模型,结果怪怪的。。。跪求高手。。在线等
hfsrjkesiosdmdklgdhi