❶ 用matlab 做时间序列分析应该用什么工具箱
要把抄这个工具箱添加进matlab 中就行了。具体方法:如果是Matlab安装光盘上的工具箱,重新执行安装程序,选中即可。
如果是单独下载的工具箱,一般情况下仅需要把新的工具箱解压到某 个目录,然后用ddpath(对于多个目录的使用genpath()或者pathtool添 加工具箱的路径,然后用which newtoolbox_command.m来检验是否可 以访问。
如果能够显示新设置的路径,则表明该工具箱可以使用了。
具体请看工具箱自己代的README文件。
❷ matlab 时频分析工具箱怎么用
1.把工具箱解压到一个地方 2.打开matlab 3.File -> Set Path... -> Add with Subfolders... ->选择刚才解压的文件夹 这样就添加完成了,你就可以调用工具箱回中的函数了。答我添加了个时频分析的工具箱,就这样操作,可以使用。
❸ SPC软件的统计分析工具箱包括哪些方面
抄SPC.NET(赛微统计制程控袭制与分析系统)的统计分析工具箱包括:回归分析(Regression Analysis)、方差分析(ANOVA)、相关性分析(Correlations)、假设检验(Hypothesis Test)、参数估计(Parameters Estimate)等。
❹ matlab小波分析工具箱的使用方法 求详细过程
将原始数据文件夹到装有matlab的电脑
打开matlab软件,进入软件主界面
在软件的左下方找到start按钮,点击选择toolbox,然后选择wavelet
进入wavemenu界面,选择一维小波中的wavelet1-D并进入
5.将数据文件(.Mat格式)托到matlab软件主界面的workspace
6.在wavemenu主界面中选择file-load signal或者import from workspace—import signal
7.选择要处理的信号,界面出现loaded信号,这就是没有去噪前的原
始信号
8.右上角选择用于小波分析的小波基以及分解层数并点击analyse开始分析
9.分析后在左边栏目中出现s,a*,d*,其中s为原信号,a*为近似信号,d*为细节信号
10.然后点击denoise去噪
11.阈值方法常用的有4种fixed(固定阈值),rigorsure,heusure,minmax根据需要选择,一般情况下rigorsure方式去噪效果较好
12.oft(软阈值),hard(硬阈值)一般选择软阈值去噪后的信号较为平滑
13.在噪声结构中选择unscaled white noise,因为在工程应用中的噪声一般不仅仅含有白噪声
14.在噪声结构下面的数值不要随意改,这是系统默认的去噪幅度
15.点击denoise开始正式去噪
16.在此窗口下点击file-save denoised singal,保存输出去噪后的信号
17.去噪结束
18.去噪结束后,把去噪后信号(.mat格式)拖至matlab主界面的workspace中,与原信号一起打包,以便以后计算统计量
19.Matlab编程计算相关统计量以及特征量
20.得出统计量和特征量后结束
❺ matlab 如何调用时频分析工具箱
找到工具箱是指toolbox吗 ?之后怎么办呢?麻烦说具体一点,要是有图就更好了。新手报到
❻ matlab 时频分析工具箱怎么使用
将文件夹拷贝到MATLAB下work目录中。
在MATLAB中file菜单下的setpath中添加整个work目录后保存。
❼ 关于MATLAB时频分析工具箱怎么导入
1.把工具箱解压复到一个地方 2.打开制matlab 3.File -> Set Path... -> Add with Subfolders... ->选择刚才解压的文件夹 这样就添加完成了,你就可以调用工具箱中的函数了。我添加了个时频分析的工具箱,就这样操作,可以使用。
❽ matlab里有什么工具箱,可以用FFT(快速傅立叶变换)做频谱分析
1、采样数据导入Matlab 。
采样数据的导入至少有三种方法。
第一就是手动将数据整理成Matlab支持的格式,这种方法仅适用于数据量比较小的采样。
第二种方法是使用Matlab的可视化交互操作,具体操作步骤为:File --> Import Data,然后在弹出的对话框中找到保存采样数据的文件,根据提示一步一步即可将数据导入。这种方法适合于数据量较大,但又不是太大的数据。
第三种方法,使用文件读入命令。数据文件读入命令有textread、fscanf、load等,如采样数据保存在txt文件中,则推荐使用 textread命令。如[a,b]=textread('data.txt','%f%*f%f'); 这条命令将data.txt中保存的数据三个三个分组,将每组的第一个数据送给列向量a,第三个数送给列向量b,第二个数据丢弃。命令类似于C语言,详细可查看其帮助文件。文件读入命令录入采样数据可以处理任意大小的数据量,且录入速度相当快,一百多万的数据不到20秒即可录入。
2、对采样数据进行频谱分析 。
频谱分析自然要使用快速傅里叶变换FFT了,对应的命令即 fft ,简单使用方法为:Y=fft(b,N),其中b即是采样数据,N为fft数据采样个数。一般不指定N,即简化为Y=fft(b)。Y即为FFT变换后得到的结果,与b的元素数相等,为复数。以频率为横坐标,Y数组每个元素的幅值为纵坐标,画图即得数据b的幅频特性;以频率为横坐标,Y数组每个元素的角度为纵坐标,画图即得数据b的相频特性。典型频谱分析M程序举例如下: clc fs=100;
t=[0:1/fs:100];
N=length(t)-1;%减1使N为偶数 %频率分辨率F=1/t=fs/N
p=1.3*sin(0.48*2*pi*t)+2.1*sin(0.52*2*pi*t)+1.1*sin(0.53*2*pi*t)... +0.5*sin(1.8*2*pi*t)+0.9*sin(2.2*2*pi*t);
%上面模拟对信号进行采样,得到采样数据p,下面对p进行频谱分析
figure(1) plot(t,p); grid on
title('信号 p(t)'); xlabel('t') ylabel('p') Y=fft(p);
magY=abs(Y(1:1:N/2))*2/N; f=(0:N/2-1)'*fs/N; figure(2)
%plot(f,magY);
h=stem(f,magY,'fill','--');
set(h,'MarkerEdgeColor','red','Marker','*') grid on
title('频谱图 (理想值:[0.48Hz,1.3]、[0.52Hz,2.1]、[0.53Hz,1.1]、[1.8Hz,0.5]、[2.2Hz,0.9]) '); xlabel('f (Hz)') ylabel('幅值')
对于现实中的情况,采样频率fs一般都是由采样仪器决定的,即fs为一个给定的常数;另一方面,为了获得一定精度的频谱,对频率分辨率F有一个人为的规定,一般要求F<0.01,即采样时间ts>100秒;由采样时间ts和采样频率fs即可决定采样数据量,即采样总点数N=fs*ts。这就从理论上对采样时间ts和采样总点数N提出了要求,以保证频谱分析的精准度。
❾ matlab时频分析工具箱怎么用
好雨知时节,当春乃发生。