⑴ 关于大数据的书值得去看的有哪些可以推荐的
阿里巴巴数据技术及产品部的《大数据之路:阿里巴巴大数据实践》。它山之石,可以攻玉,大公司实践的书可以多读,笔者专门为这本书写过两篇读书心得,里面有很多的干货,可以起到开阔视野的作用,对实际工作有借鉴意义,值得精读。
⑵ 麻烦哪位高人推荐几本数据挖掘的书
楼上来在误人子弟了,数据库自和数据仓库还是区别一大把的,可能数据仓库的很多实现上还是借助于数据库,但是要记住,现在已经很多成熟的东西是不基于数据库了,或者精确一点说是不借助于传统的关系型数据库了,比如Hyperion的数据仓库产品的话,就是搭建在ESSBASE上的,这就是一种多维数据库。
另外传统数据库的设计和现在OLAP数据仓库的设计完全是不一样的,传统一般采用的雪花模型在OLAP中基本上不会采用的。所以还是很多不同的,不能等同对待
如果要学数据仓库的话,我建议你看两本书:构建数据仓库、数据仓库工具箱:维度建模的完全指南
把这两本书看看就基本上具备理论基础了。
⑶ 哪可以下载到《数据仓库工具箱:维度建模的完全指南》中文电子版本
六维空间
⑷ 怎么理解数据仓库中的面向主题
1、面向主题,是让你面向主题去分析问题,架构模型,而不是非要物理上回分开,就像答面向对象编程一样
2、“很多资料中都写数据仓库的数据模型是使用“第三范式”,数据集市才使用多维的星型模型”这个是不对的,因为在Inmon 和 Kimball 的书中都没有表示这种说法
Inmon 表是建数仓需要有个企业级的一致数据模型,并没有表示非要第三范式,这个第三范式是 Kimball 在自己的书里说 Inmon 的方式用第三范式不好啦啥的,具体自己看书《数据仓库工具箱-维度建模权威指南》第一种1.5节
数据集市使用维度建模,这个说法Kimball 也没有说过,而是 Inmon 在自己的书里说维度建模只适合数据集市,具体看《数据仓库》第5张5.19节(应该是这一节)
PS:其实感觉他俩的观点差不多,只是根据他们必须得给自己的观点加油呐喊而已,两个人互撕很多年了