导航:首页 > 五金知识 > 基于贝叶斯网络工具箱的贝叶斯学习和推

基于贝叶斯网络工具箱的贝叶斯学习和推

发布时间:2021-12-11 11:33:12

⑴ 怎么通俗易懂地解释贝叶斯网络和它的应用

第一步:贝叶斯网络来工具箱
第二步自:解压压缩包
第三步:将工具箱中bnt文件夹复制到matlab工具箱文件夹中(D:\Program Files\MATLAB\R2014a\toolbox)
第四步:打开matlab2014a
贝叶斯网络是处理不确定信息做有效的表示方法之一。其关键的特征之一是提供了把整个概率分布分解成几个局部分布的方法,网络的拓扑结构表明如何从局部的概率分布获得完全的联合概率分布。
贝叶斯网络适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚。否则直接从数据中学习贝叶斯网络结构复杂性极高(随节点的增加成指数级增长)

⑵ 如何使用贝叶斯网络工具箱

第一步:下载贝叶斯网络工具箱

第二步:解压压缩包

第三步:将工具箱中bnt文件夹复制到matlab工具箱文件夹中

第四步:打开

⑶ 如何评价学习出的贝叶斯网络模型

第一步:下载贝叶斯网络工具箱第二步:解压压缩包第三步:将工具箱中bnt文件回夹复制到matlab工具箱文件夹中(答D:\Program Files\MATLAB\R2014a\toolbox)第四步:打开matlab2014a贝叶斯网络是处理不确定信息做有效的表示方法之一。其关键的特征之一是提供了把整个概率分布分解成几个局部分布的方法,网络的拓扑结构表明如何从局部的概率分布获得完全的联合概率分布。 贝叶斯网络适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚。否则直接从数据中学习贝叶斯网络结构复杂性极高(随节点的增加成指数级增长)

⑷ 如何利用贪心法构建贝叶斯网络代码

基于matlab的贝叶斯网络工具箱BNT是kevin p.murphy基于matlab语言开发的关于贝叶斯网络学习的开源软件包,提供了许多贝叶斯网络学习的底层基础函数库,支持多种类型的节点(概率分布)、精确推理和近似推理、参数学习及结构学习、静态模型和动态模型。
贝叶斯网络表示:BNT中使用矩阵方式表示贝叶斯网络,即若节点i到j有一条弧,则对应矩阵中(i,j)值为1,否则为0。
结构学习算法函数:BNT中提供了较为丰富的结构学习函数,都有:
1. 学习树扩展贝叶斯网络结构的TANC算法learn_struct_tan().
2. 数据完整条件下学习一般贝叶斯网络结构的K2算法learn_struct_k2()、贪婪搜索GS(greedy search)算法learn_struct_gs()和爬山HC(hill climbing)算法learn_struct_hc()等。
3. 缺失数据条件下学习一般贝叶斯网络结构的最大期望EM(expectation maximization)算法learn_struct_EM()和马尔科夫链蒙特卡罗MCMC(Markov Chain Monte Carlo)learn_struct_mcmc()算法等。
参数学习算法函数:BNT中也提供了丰富的参数学习函数,都有:
1. 完整数据时,学习参数的方法主要有两种:最大似然估计learn_params()和贝叶斯方法bayes_update_params();
2. 数据缺失时,如果已知网络拓扑结构,用EM算法来计算参数,倘若未知网络拓扑结构,使用结构最大期望SEM(structure EM)算法learn_struct_SEM()。
推理机制及推理引擎:为了提高运算速度,使各种推理算法能够有效应用,BNT工具箱采用了引擎机制,不同的引擎根据不同的算法来完成模型转换、细化和求解。这个推理过程如下:

BNT中提供了多种推理引擎,都有:
1. 联合树推理引擎jtree_inf_engine();
2. 全局联合树推理引擎global_joint_inf_engine();
3. 信念传播推理引擎 belprop_inf_engine();
4. 变量消元推理引擎 var_elim_inf_engine().

⑸ 求助,怎样用贝叶斯网络工具箱实现朴素贝叶斯分类

为了测试评估贝叶斯分类器的性能,用不同数据集进行对比实验是必不可少的. 现有的贝叶斯网络实验软件包都是针对特定目的设计的,不能满足不同研究的需要. 介绍了用Matlab在BNT软件包基础上建构的贝叶斯分类器实验平台MBNC

⑹ 贝叶斯网络学习

BN学习的目的就是要找到一个最能真实反映当前研究问题中现有的各研究对象之间相互依赖关系的BN模型,BN学习可以分为以下两个阶段:①结构学习(Structure Learn-ing),即网络拓扑结构的学习。②参数学习(Parameter Learning),即网络中每个节点变量的局部先验条件概率分布的学习。

比较简单的BN学习方法是先依据专家知识确定BN的拓扑结构,然后通过给定的样本数据学习BN的概率分布(参数)。比较复杂的BN学习方法是BN的拓扑结构和概率分布都是通过给定样本数据学习得出,这也是现在的研究热点。结构学习和参数学习是相互联系的,一方面BN的结构是由联合概率分布函数来直接决定;另一方面,节点的条件概率依赖于BN的拓扑结构。

2.2.1 贝叶斯网络结构学习

BN结构学习就是利用训练样本数据,寻找对数据和先验知识拟合的最好的网络拓扑结构。学习分为完备数据结构学习和不完备数据结构学习两种情况。目前,具有完备数据的 BN 结构学习方法比较成熟,而从不完备数据中学习 BN 结构比较困难,现有算法仍存在缺陷。

2. 2. 1. 1 具有完备数据的贝叶斯网络结构学习

当训练样本完备时,常用的 BN 结构学习算法可以分为两种: 基于搜索记分的方法和基于统计测试的方法。

( 1) 基于搜索评分的结构学习算法。基于搜索评分的结构学习算法将结构学习视为搜索最佳网络问题。其核心思想是: 首先添加任一条边,然后使用搜索方法添加新的边,最后利用评分函数评分,测试新旧网络分值的大小。学习的目的就是找到评分最大的结构。这是个连续进行的过程,直到老模型的分数不再比新模型的分数低为止。评分方法有很多,如基于熵的评分、最小描述长度( LMS) 的评分以及贝叶斯评分。这类算法有一个共同点: 为每个候选的 BN 定义一种评价网络结构与样本集吻合程度的测度,然后,通过遗传和进化算法、模拟退火法或者爬山算法搜索具有最佳测度的拓扑网络结构。

( 2) 基于统计测试的结构学习算法。该学习算法的核心思想是: 首先进行训练样本统计测试,尤其是测试条件独立性; 然后,利用节点集间的条件独立性构造 DAG( 有向无环图) ,以尽可能地囊括这些条件独立性,它将独立的概念从构造结构中分离出来。

具有代表性的统计测试的结构学习算法有: ①Spirtes 等( 1993) 提出 SGS 算法,是一个典型的用条件独立性测试确定拓扑结构的算法,该算法从无向完全图出发,如果相邻结点间存在无向分隔割集,则删除它们的边,然后通过统计测试来确定剩余边的方向。②Acid 等( 1999) 提出了有向图构造算法 EP,证明有向图模型无论是否为单连接结构都对分类问题的影响效果不大。③Cheng Jie 等( 2002) 年将统计测试与信息论结合,通过相互信息量的计算来确定节点间的条件独立性,用相互信息量代替条件独立测试,从而构造多连接有向图模型。

2. 2. 1. 2 缺失数据情况下的贝叶斯网络结构学习

在数据不完整的情况下,BN 结构学习会比较困难,现有的研究算法主要是基于打分的结构学习。数据不完备会导致出现以下两方面问题: ①一些充分统计因子不存在,导致无法直接进行结构打分; ②打分函数不再具有可分解形式,因此不能进行局部搜索。围绕这两方面问题相继出现了一些解决的方法,如 Friedman( 1997) 借鉴参数学习的选择 - 期望最大算法,提出模型的 EM 结构学习方法; Sebastian 等( 1997) 将 BC 算法应用于结构学习; Fried-man( 1998) 引入一种使用贝叶斯打分方法学习概率模型的新方法,贝叶斯结构期望最大算法,简称为 Bayesian - SEM 算法。

2. 2. 2 贝叶斯网络参数学习

BN 参数学习的目标是: 给定训练样本和网络拓扑结构,利用先验知识,确定 BN 模型各个节点处的条件概率。参数学习同样可以分为完备数据和不完备数据两种情况。数据完备时的参数学习算法包括由 Fayyad( 1990) 提出的贝叶斯估计方法和 Spiegelhalter( 1996) 提出的最大似然估计 ( MLE) 方法; 从不完备的数据中学习概率参数的算法主要有 Gibbs 样本法( Heckerman,1995) 和期望-最大 ( EM) 算法( Spiegelhalter,1990; Mallet,1991; Lauritzen,1991等) 。

2. 2. 3 贝叶斯网络推理

概率推理是 BN 应用的主要目的之一。BN 推理是根据某些已知给定值的节点,估计未知节点的值。即在给定一个 BN 模型的情况下,依据已知条件,利用贝叶斯概率中条件概率的计算方法,计算出所感兴趣的目标节点发生的概率。在 BN 推理中主要包括以下 3 种推理方式:

( 1) 因果推理: 也称自上向下的推理,目的是由原因推出结论。已知证据 ( 原因) ,根据BN 的推理计算,求出在该证据 ( 原因) 发生的情况下结果发生的概率。

( 2) 诊断推理: 也称自下向上的推理,目的是由结论推出原因。是在已知结果情况下,根据 BN 推理计算,得到导致该结果发生的原因即其发生的概率。该推理常用在故障诊断、病理诊断中,目的是找到故障发生、疾病发生的原因。

( 3) 支持推理: 目的是对原因之间的相互影响进行分析,提供用以支持所发生现象的解释。

BN 推理算法大体可以分为精确推理算法和近似推理算法两大类。理论上,所有类型的 BN 都可以用精确推理算法进行概率推理,但实际上 BN 精确推理是一个 NP-hard 问题( Cooper,1990) ,尤其当模型结构较复杂、包含大量的变量时,精确推理就变得尤为困难。而近似推理相比精确推理来说,是解决复杂网络模型的一个较好办法,它可以大大简化计算和推理过程。因此,现阶段 BN 研究中许多情况下都采用近似算法。

⑺ 基于matlab的贝叶斯网络学习方法研究

你去同方知网看看啊,搜索贝叶斯 MatLab。你应该学生对吧,用你们学校内网下载免费的。。。不用谢

⑻ 怎么通俗易懂地解释贝叶斯网络和它的应用

我们首先呢下载贝叶斯网络工具箱再个呢解压压缩包然后将工具箱中bnt文件夹复制到matlab工具箱文件夹中(D:Program FilesMATLABR2014a oolbox)最后是打开matlab2014a,贝叶斯网络是处理不确定信息做有效的表示方法之一。其关键的特征之一是提供了把整个概率分布分解成几个局部分布的方法,网络的拓扑结构表明如何从局部的概率分布获得完全的联合概率分布。 贝叶斯网络适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚。否则直接从数据中学习贝叶斯网络结构复杂性极高(随节点的增加成指数级增长)在这个网络meta分析中,研究者比较了多种非类固醇抗炎药治疗膝、 髋关节骨性关节炎疼痛的疗效,那两个大点就是样本量最大的两个不同的药物组(变量)。当然,伟大的贝叶斯统计怎么会仅仅局限于对文献数据的网络meta分析?教科书上说,贝叶斯网络,既形式上,一个贝叶斯网络就是一个有向无环图,结点表示随机变量,可以是可观测量、隐含变量、未知参量或假设等;结点之间的邮箱边表示条件依存关系,箭头指向的结点依存于箭头发出的结点(父节点),每个结点都与一个概率函数相关。看看!说明啥?长得多么多么像医学中各个疾病与其危险因素的关系啊!多么多么像临床诊断指南里一下症状中几条中满足几条考虑诊断的诊断轴啊!

阅读全文

与基于贝叶斯网络工具箱的贝叶斯学习和推相关的资料

热点内容
mac一体机怎么连接机械硬盘 浏览:940
什么设备上都带仪表 浏览:819
练大肚子的器材有哪些 浏览:962
深圳精诚鑫五金制品 浏览:695
实验室常用的蒸馏装置图 浏览:870
机械设备日常检查记录表如何填写 浏览:581
家里自来水总阀门怎么加 浏览:187
常用仪表测什么 浏览:719
温州广纳五金装饰市场 浏览:77
宝安高级科技探究器材哪里有卖 浏览:478
大众朗逸仪表盘怎么成英文了 浏览:144
电动工具用什么手套 浏览:407
车辆机械故障是什么原因 浏览:515
暖气管道丝杠阀门图片 浏览:829
科学仪器属于什么 浏览:192
仪表盘上五角星是什么 浏览:972
煤矿井下自动灭火装置 浏览:224
江苏二类机械费多少钱 浏览:215
自动加药装置验收 浏览:116
暖气总阀门如何开关 浏览:245