导航:首页 > 五金知识 > 地锚钻快速入土电动工具

地锚钻快速入土电动工具

发布时间:2021-11-10 12:47:10

❶ 什么是地锚啊

地锚就是一种把需固定的物体固定在稳固的地面上。如电线杆的斜拉线的下端(地面以下)要拴在地下的“锚”上才不易拉出来。

地锚可分为锚桩、锚点、锚锭、拖拉坑,起重作业中常用地锚来固定拖拉绳、缆风绳、卷扬机、导向滑轮等,地锚一般用钢丝绳、钢管、钢筋混凝土预制件、圆木等做埋件埋入地下做成。

安全技术要求:



1.起重吊装使用的地锚,应严格按设计进行制作,并做好隐蔽工程记录,使用时不准超载。

2.地锚坑宜挖成直角梯形状,坡度与垂线的夹角以150度为宜。地锚深度根据现场综合情况决定。

3.拖拉绳与水平面的夹角一般以30度以下为宜,地锚基坑出线点(即钢丝绳穿过土层后露出地面处)前方坑深2.5倍范围及基坑两侧2米以内,不得有地沟、电缆、地下管道等构筑物以及临时挖沟等。

4.地锚周围不得积水。

5.地锚不允许沿埋件顺向设置。

地锚可分为锚桩、锚点、锚锭、拖拉坑,起重作业中常用地锚来固定拖拉绳、缆风绳、卷扬机、导向滑轮等,地锚一般用钢丝绳、钢管、钢筋混凝土预制件、圆木等做埋件埋入地下做成。

❷ 化工八大危险作业是指什么

动火作业、受限空间作业、吊装作业、盲板抽堵作业、动土作业、断路作业、高处作业、临时用电作业。

一、动火作业

动火作业是在禁火区进行焊接与切割作业及在易燃易爆场所使用喷灯、电钻、砂轮等进行可能产生火焰、火花和炽热表面的临时性作业。

易燃易爆场所:主要指公司涂装及喷砂场、油库、气站、危险化学品仓库、材料库、油品及油漆稀料、前处理剂等化学品储存及使用场所、液化气瓶储存室、变配电室、相互禁忌作业可能引起火灾的区域。

二、进入受限空间作业

受限空间是指工厂的各种设备内部(炉、塔釜、罐、仓、池、槽车、管道、烟道等)和城市(包括工厂)的隧道、下水道、沟、坑、井、池、涵洞、阀门间、污水处理设施等封闭、半封闭的设施及场所(船舱、地下隐蔽工程、密闭容器、长期不用的设施或通风不畅的场所等)。

以及农村储存红薯、土豆、各种蔬菜的井、窖等。通风不良的矿井也应视同受限空间。

三、临时用电作业

凡属永久性固定用电外,如因施工、检修需要,加接线路、增设临时施工变电器、接入电焊机、潜水泵、电动工具、通风机、照明灯具等一切临时性负荷,通称为临时用电。

四、高处作业

凡在坠落高度基准面2m以上(含2m)有可能坠落的高处进行的作业均称高处作业。

五、断路作业

断路作业:在企业生产区域内的交通道路上进行施工及吊装吊运物体等影响正常交通的作业。

六.破土作业

破土作业:挖土、打桩、钻探、坑探、地锚入土在0.5米以上;使用推土机、压路机等施工机械进行填土或平整场地等可能对地下隐蔽设施产生影响的作业。

七、吊装作业

吊装作业:使用吊车或者起升机构对设备的安装、就位的统称。

八、盲板抽堵作业

盲板抽堵作业:当燃气设备需要检修时,就要求停气,可靠切断介质.由于介质是气体,靠阀门完全切断十分困难,这时侯就需要堵抽盲板。

(2)地锚钻快速入土电动工具扩展阅读:

有限空间安全作业规定

a)必须严格实行作业审批制度,严禁擅自进入有限空间作业。

b)必须做到“先通风、再检测、后作业”,严禁通风、检测不合格作业。

c)必须配备个人防中毒窒息等防护装备,设置安全警示标识,严禁无防护监护措施作业。

d)必须对作业人员进行安全培训,严禁教育培训不合格上岗作业。

e)必须制定应急措施,现场配备应急装备,严禁盲目施救。

临时用电注意事项:

1.施工现场临时用电必须有施工组织设计,并经审批。

2.装、维修或拆除临时用电工程,必须由电工完成,并做好记录,电工必须有电工操作证。

3.缆必须使用五芯电缆线。电缆干线应采用埋地或架空敷设,严禁沿地面明设,并应避免机械损失和介质腐蚀。架空线必须设在专用电杆上,严禁架设在树木、脚手架上。

4.力线路必须采用TN-S接零保护系统,保护零线的设置必须符合技术规范。

5.电箱必须符合“三级配电两级保护”和“一机、一闸、一箱”的要求,同时必须装设漏电保护器。

6.工现场临时用电必须经过监理人员组织验收,并由监理人员签发准许使用意见。

❸ 安全作业管理制度中的8大危险作业指什么

1、动火作业:能直接或间接产生明火的工艺设置以外的非常规作业,如使用电焊、气焊割、喷灯、电钻、砂轮等进行可能产生火焰、火花和炽热表面的非常规作业。

2、受限空间作业:一切通风不良、容易造成有毒有害气体积聚和缺氧的设备、设施和场所都叫受限空间(作业的空间有限),在受限空间的作业称为受限空间作业。

3、吊装作业:利用各种机具将重物吊起,并使重物发生位置和空间变化的作业过程。

4、盲板抽堵作业:在设备抢修或检修过程中,设备、管道内存有物料及一定温度、压力情况时的盲板抽堵,或设备、管道内物料经吹扫、置换、清洗后的盲板抽堵。

5、动土作业:挖土、打桩、钻探、坑探、地锚入土深度0.5m以上;使用推土机、压路机等施工机械进行填土或平整场地等可能对地下隐蔽设施产生影响的作业。

6、断路作业:在企业生产区域内的交通道路上进行施工及吊装吊运物体等影响正常交通的作业。

7、高处作业:凡在坠落高度基准面2m以上(含2m)有可能坠落的高处进行的作业均称高处作业。

8、设备检维修作业。

❹ 地锚是什么

一种地锚包括锚体,锚体设置在于地上钻孔形成的锚孔中,沿锚孔的不同深度在锚体上设有多个锚定体,牵引线材以u字形回转状绕过锚定体上的闩,而牵引线材被张紧后其端部在锚孔孔口被固定,其特征是在各锚定体之间设置增强构件。

❺ SPJ-型钻机

SPJ-300型钻机(图2-81)是一种大口径转盘回转式钻机。它的特点是钻进效率高,适用于钻进松散的第四纪地层,也可钻进基岩;机械的可拆性强,能将钻机解体成部件(升降机、转盘、变速箱等),便于运输。特别适合于在交通不便的地区进行施工。

图2-81 SPJ-300型钻机

1—柴油机;2—泥浆泵;3—主机;4—钻塔;5—游动滑车;6—水龙头;7—机上钻杆;8—转盘;9—机架;10—万向转动轴

(一)SPJ-300型钻机技术性能

SPJ-300型钻机的主要技术性能见表2-35所示。

表2-35 SPJ-300型钻机技术性能

(二)钻机传动系统

见图2-82所示。动力机的动力经传动装置分成两路,一路通过三角皮带传至泥浆泵(两台),另一路经三角皮带传到摩擦离合器输入变速箱,变速箱为三轴二级变速,可获得三种不同转速。在变速箱内的输出轴上装有牙嵌离合器。经牙嵌离合器,通过万向轴传递于转盘,使转盘获得正、反转三种转速。而另一牙嵌离合器,则将动力输送至主卷扬机和副卷扬机,主卷扬机轴上装有调节给进蜗杆(超越离合器),用于微调给进或人力提升;副卷扬机轴上装有摩擦离合器,用于接合动力,控制副卷扬机的接合或分开。

图2-82 SPJ-300型钻机传动系统

1—输入轴(Ⅰ轴);2—中间轴(Ⅱ轴);3—输出轴(Ⅲ轴);4,5—牙嵌离合器;6—调节给进蜗杆;7—副卷扬摩擦离合器;8—动力机;9—泥浆泵;10—变速箱;11—主卷扬机;12—副卷扬机;13—转盘;14—摩擦离合器

1.摩擦离合器

离合器结构见图2-83所示。离合器装在三角皮带轮内,为减少三角皮带轮对变速箱输入轴的径向作用力,特将三角皮带轮用两盘滚珠轴承装于减震套上,减震套用螺栓直接固定在变速箱体上。

图2-83 摩擦离合器

1—减震套;2—三角皮带轮;3—传动轴套(被动摩擦压盘);4—销钉弹簧;5—内齿圈;6—主动摩擦压片;7—被动摩擦片;8—压紧盘;9—杠杆;10—滚子;11—压紧滑块;12—拨叉;13—杠杆支撑;14—定位销

该离合器为常开干摩擦式。传动轴套以花健与变速箱输入轴(第一轴)装合。主动摩擦片两侧铆有石棉材料并具有外齿,与皮带轮内齿相结合,被动摩擦片有内齿,与传动轴套外齿啮合,被动摩擦片装于两片主动摩擦片之间,主、被动摩擦片均可沿轴向移动。压紧盘同样有内齿与传动轴套外齿啮合。工作时压紧滑块向左移动,抬起杠杆使压紧盘把主、被动摩擦片压紧,于是传动轴套接受皮带轮的动力而旋转,并传递于变速箱。相反当压紧滑块被拉向右移动时,在销钉弹簧作用下,主、被动摩擦片分开,离合器切断动力。

2.变速箱

见图2-84a、图2-84b、图2-84c所示,箱内装有三根轴,其中图中轴6与轴20位于同一水平平面内,轴6为变速箱输入轴,轴5则位于轴6和轴20的中间下端,三根轴端面互成三角形。

图2-84 变速箱

a:1—变速手把;2—限位板;3,4—拨叉;5—第二轴;6—第一轴;7—变速操纵手柄;8,9,10,11,12—齿轮b:12—齿轮;13—牙嵌离合器外套;14—牙嵌离合器内套;15—锥齿轮;16—带轴锥齿轮;17—双向牙嵌离合器;18—锥齿轮;19—齿轮;20—第三轴;21—第一轴c:22—上箱体;23—下箱体;24,25—连接螺栓;26—转盘牙嵌离合器操纵把手

变速箱轴6用两盘滚珠轴承装在箱壳上,轴的一端伸出箱体,与离合器连接,以接受动力。轴中部花键端装有滑动齿轮和双联滑动齿轮,分别由两个拨叉和一个变速手把控制。手把用限位板限位,限位板用螺钉固定于操作盒壳体上,其中开有限位槽,当手把处于限位板中间位置时,即为空档。

轴20由一对圆锥滚子轴承支撑在箱体上,中部用滚动轴承安装有两个带牙嵌的圆锥齿轮15和18,其间花键部分安装有双向牙嵌离合器,经拨叉操纵,动力可以分别带动两端圆锥齿轮转动,因而万向轴可以获得正、反转三种不同转速。第三轴的另一端安装有牙嵌离合器内套,它可以与牙嵌离合器外套啮合,带动轴头齿轮将回转力矩输给主、副卷扬机。

3.转盘

转盘结构见图2-85所示。转盘大斜齿轮用两个平锥安装于转台上,并用螺钉固定。转台支撑于转盘体的主轴承上,转台中置有各为两块组成、内孔为方形的大、小方补心。

图2-85 转盘

1—小方补心;2—止动板;3—大方补心;4—拨柱;5—主轴承;6—键;7—转台;8—大斜齿轮;9—小斜齿轮;10— 齿轮轴;11—圆锥齿轮轴;12—圆锥齿轮;13—挡圈;14—底座;15—支撑板;16—卡子;17—螺栓;18—大螺母;19—副轴承;20—转盘体

方形主动钻杆即插小方孔中。下轴承用螺母安装于转台下部,用以支撑由于斜齿轮传动而产生的轴向推力。当上下轴承磨损后,可松一头螺栓,转动大螺母进行调整。转盘体用四个螺栓固定于底座上。

转盘动力由万向轴输入,万向轴两端法兰盘分别和变速箱及转盘连接。转盘与万向轴端连接处为一传动箱。输入动力经由传动箱圆锥齿轮,竖轴和小斜齿轮,带动大斜齿和转台回转。为了防止运动时小补心被甩出,在小补心与大补心之间装有止动板。

在转台上用螺栓固定有拧管用拨柱。在转盘底座的滑道上有两块拧管支撑板,用以支撑钻具质量和承受反扭矩,拧卸钻具时,先从转台上取出大、小补心,将拧管支撑板移至中间,用销子销牢;然后可用下垫叉卡住钻具接头的下部切口并置于支撑梁上,在转台上则用上垫叉卡住钻具接头的上部切口并置于支撑梁上即可进行拧卸。拧卸管时,转台旋转带动拨柱撞击上垫叉的尾部,带动垫叉旋转进行拧卸钻具。

转盘中除上部主轴承用润滑脂润滑外,其余轴承、齿轮均由齿轮箱中润滑油润滑和飞溅润滑。

4.主卷扬机

主卷扬机为游星式机构,其结构如图2-86所示。

图2-86 主卷扬机

1—提升盘;2—提升制带;3—内齿圈;4—行星齿轮;5—行星支撑盘;6—中心齿轮;7—卷筒;8—卷扬机主轴;9—制动制带;10—螺栓;11—传动齿轮

卷扬机主轴左端装有单向超越离合器。通过手轮操作可实现微调给进,或者当动力机发生故障时可作为人力提升用。

单向超越离合器是一种滚柱式定向离合器,它只能传递单向扭矩。在机械中用来防止逆转及完成单向传动。

单向超越离合器的结构见图2-87所示,棘轮花键装于卷扬主轴端部,蜗轮套在棘轮外面,蜗轮内圆与棘轮装合时形成有六个斜槽,每个槽内装有滚柱和弹簧。当卷扬机提升时,主轴回转驱动棘轮作顺时针快速旋转,图2-88b棘轮上的滚柱借摩擦力压缩弹簧,滚柱压向宽槽的空间,蜗轮与棘轮脱开接触,蜗轮不转动,而卷扬机则进行提升工作。

图2-87 单向超越离合器

1—蜗杆;2—手轮;3—弹簧;4—蜗轮;5—棘轮;6—滚柱

当单向超越离合器用于微调给进时,应先脱开卷扬机的动力,卷扬机提升手把下压制动提升盘。此时制动手把处于放松状态。当需要控制给进力和给进速度时,转动手轮使蜗轮作顺时针转动,滚柱在弹簧的压力和蜗轮摩擦力的作用下,滚柱推向斜槽狭窄的楔角内,使蜗轮和棘轮相互卡紧,如图2-88a所示;从而带动棘轮及卷扬机主轴旋转,迫紧卷筒转动拉紧钢绳,以达到调节给进力和给进速度的目的。当动力机发生故障时手轮同样可实现人力提升钻具的目的。卷扬机制动器为制带式。

图2-88 单向超越离合器工作原理示意图

1—棘轮;2—弹簧;3—滚柱;4—蜗轮

5.副卷扬机

副卷扬传动机构为摩擦式,见图2-89所示。卷扬机动力由固定在卷扬机主轴左端的传动齿轮输入,通过平键带动主轴回转,主轴两端用滚动轴承支撑在轴承座上,卷筒用两盘滚动轴承安装于主轴中部。摩擦离合器安装在卷筒制圈的左侧,用以驱动卷筒控制卷扬机结合或分开。

图2-89 副卷扬机

1—传动齿轮;2—键;3—轴承座;4—副卷扬机主轴;5—卷筒;6—离合器操纵手把;7—注油塞;8—制带

卷筒左端的制圈上部装有制带式制动器,见图2-90。制动器由脚踏板及连杆机构操纵。当需要较长时间制动时,可用手柄及爪卡脚踏板的挡销锁紧。

制带的复位松开借助弹簧和弹簧板,螺母用于调整制带与制圈间隙均匀度。支撑卷筒的两盘滚动轴承,由密封在卷筒内的机油润滑:即卸去油塞向卷筒内加油,其余轴承均用黄油润滑。

图2-90 副卷扬机制动带

1—脚踏板;2—轴销;3—爪卡;4—手把;5—连杆;6—弹簧;7—调整螺母;8—弹簧板;9—螺母;10—吊钉

6.机架

由型钢焊接而成,其上固定有主卷扬机、副卷扬机、变速箱以及它们的操纵机构与保护装置,机架上还有两个齿轮;可将变速箱动力分别传递给主、副卷扬机。机架底部有6个螺栓与钻塔底座联结。

7.传动装置

传动装置(图2-91)是由柴油机底座、柴油机附属操纵部分和其他传动部件组成。传动轴通过联轴节与动力机相连。传动轴上装有4个三角皮带轮。C型三角皮带轮用于向钻机变速箱离合器输出动力;2个B型三角皮带轮系供带动小型发电机或作其他用。

图2-91 传动装置

1—联轴节;2—传动轴;3—轴承座;4—螺栓;5—带动钻机的三角皮带轮;6—带动泥浆泵的三角皮带轮;7—带动照明发电机的三角皮带轮;8—用于驱动其他装置的三角皮带轮357

(三)钻机的安装

在预定的孔口周围平整一块坚实的场地,其面积不小于54m2。然后根据各地梁上所标印记铺设底座各梁。铺设时,先铺纵梁后铺横梁,先铺大梁后铺小梁。铺好后,应检查整个底座框架与孔口相互位置是否正确,底梁与地面之间是否有间隙,如有应填实;检查底梁是否水平,如不水平应进行调平。

上述工作完毕,即开始塔身的地面安装工作。安装时,先将马蹄座用螺钉固定在底梁上,而后将塔身销牢在马蹄座上,再将塔身与另一节塔身依次销牢,最后将两条塔腿与天车梁连在一起。进行上述安装时,应将塔身各段垫平垫齐,使之成一直线。然后,将天车,挂轮分别用螺栓固定在天车架上,并将二层平台安装在塔腿上。如孔浅,钻具质量不大,可应用2×3滑轮系,天车上有3个滑轮,留1个滑轮备以后挂取土器用,挂轮即可不安装。假如塔内只放钻杆,则应使靠架与择身垂直,活动靠架张开。如钻杆卧放,则活动靠架应收拢,靠架应缚在塔腿上并与塔腿成45°的夹角。

安装起塔架,将起塔架支座固定于底座上,并将其卧放,安装完毕,即可旋入地锚,安装绷绳。旋入地锚一般的深度为2m左右,遇砂土地层可更深一些,如遇特硬地层也应旋入1.5m以上。用于起塔架的地锚可略浅些。缚于塔身的4根绷绳中,前面2根既缚于地锚又缚于塔身,后面2根只缚于塔身,待塔立起后再系于地锚;3根用于起塔架的绷绳,也是前面1根两端系牢,而后面2根只缚于起塔架。此后,即可安装泥浆泵,柴油机及升降机。将柴油机、升降机在钻塔底座上固定好,泥浆泵安装于地面上,其位置以三角皮带张紧适当为限度。然后竖起塔架。绷紧起塔架的绷绳,将主升降机钢丝绳绕于卷筒,钢丝绳的一端固定于滚筒上,另一端先穿过起塔架(图2-92),而后绕过天车,并穿过游动滑车,最后用钢丝绳卡固定于塔脚下面的基梁上。而后将游动滑车的“U”形环挂在起塔架的吊环上。

图2-92 立钻塔示意图

起立钻塔之前,必须检查钻机、动力机是否正常;地锚、绳卡、销钉、螺钉等是否可靠;绷绳有无损坏。检查完毕,即可发动柴油机,开动升降机,以低速立塔。立塔过程中,随着塔身的升起,应注意让螺母在塔身支撑滑道中滑行,至塔完全立直,滑行即终止。然后用螺钉及夹板将该螺母固定于滑道终点,并将塔身绷绳初步绷紧。此时,即可检验塔身的垂直度。如塔不垂直,可整体移动底座,或在马蹄座与底座间加垫片。如有扭曲,可以在塔的两腿上加补绷绳调节。最后将绷绳绷紧,摘下游动滑车,卸掉起塔架及其绷绳,进行缠绕副升降机钢丝绳,安装转盘,铺设台板,安装防护罩等。上述工作完成后,即可准备开钻。

(四)钻机的维护保养

钻机工作状态的好坏及其使用寿命的长短,取决于对它熟练的操作、细心的维护和正确保养的状况。

1.钻机的班保养要求

1)经常保持机器的表面清洁,注意各部件的温升情况,温升超过40℃要停车检查;

2)经常注意机械的运转情况。检查连接件和紧固件的螺丝,防护罩要安装牢固。发现机械运转的异常声响,应引起注意并停车检查;

3)按要求对各部件进行润滑。经常检查各转动部位的润滑情况,要消除各密封处的漏油现象。对齿轮箱中的润滑油应作定期检查。

2.主要部件的维护保养

(1)摩擦离合器

SPJ-300型钻机的摩擦离合器是干式离合器。它的维护保养主要是减轻摩擦片的磨损和防止油或水渗入离合器内。摩擦片脱开间隙为1.5m左右,弹簧失效的需要更换,若间隙过大时要进行调整。如发现摩擦片烧毁、老化、磨损或铆钉松动等现象时,应及时更换。为减轻磨损,离合器在使用中要避免开关频繁或在重负载下挂离合器,严禁离合器处于半开半合状态工作。如有发热、冒烟现象,应立即停车检查。

(2)变速箱

SPJ-300型钻机使用过程中,应定期检查变速箱内的齿轮牙嵌离合器啮合情况和磨损情况;检查变速箱内机油的清洁程度;对变速箱操纵装置的可靠性和平稳性均应随时检查,不符合要求之处,应及时修理或更换。

(3)升降机

升降机在使用中,制带与制圈的间隙要适当(一般为1.5mm以内),保证松开时不摩擦,结合时不打滑。制带要保持清洁,不能进入油或水,主升降机的蜗轮箱内应保持充足而清洁的锭子油。副升降机的钢丝绳要保持干净,排列整齐。

(4)转盘

工作中应经常检查转盘的固定螺栓是否拧紧;要保持主副轴承的间隙,以清除冲击载荷;应注意拧卸机件的牢固性,检查是否损坏,防止出现故障;定期对齿轮箱润滑油的质和量进行检查。

(5)操作系统

钻机操作系统应经常检查、进行润滑和除污,使各连接部分灵活。当拉杆弯曲、倾斜时,应及时调整。当闸把的活动轴磨损时,应及时拆换,以免因轴与轴孔的间隙过大而产生行程过大现象。

3.钻机的润滑

1)变速箱内采用机油润滑,打完两个孔更换一次润滑油。但是,刚出厂第一次使用的新机,应在使用两周后更换一次润滑油。

2)主升降机的蜗轮蜗杆机构采用锭子油润滑,副升降机的卷筒内两盘滚动轴承采用机油润滑。

3)转盘除主轴承采用润滑脂润滑外,其余轴承均采用机油润滑。

4)开式齿轮和一切操纵系统和非转动的摩擦面均采用机油间隙点滴润滑。

❻ 螺旋板载荷试验

螺旋板载荷试验是由平板载荷试验演变而来的一种非开挖型、能够在赋存地下水和在地表下较大深度工作的轻便原位测试手段。该测试方法始于20世纪70年代初期,30多年来,螺旋板载荷试验已经广泛应用于世界各国的工程勘察中,最大工作深度已达30m。

螺旋板载荷试验的工作原理是:通过机械或人力把地锚状的螺旋形载荷试验板,旋入到地下预定测试深度处,通过对螺旋承压板逐级施加荷载,并测计地基土受压后产生的垂向位移和所施加荷载的关系;并依此绘制地基土的应力—应变—时间关系曲线,进而求得不同深度处地基土的承载力特征值、模量值、固结系数、土的湿陷量以及软土的不排水抗剪强度等指标。

一、螺旋板载荷试验装置组成

螺旋板载荷试验装置有如下几个主要部分(图2-8):

(1)荷载源——①地面荷载源:有液压千斤顶、顶座、传力杆、应力/应变自动补偿伺服系统等;②地下荷载源:由压杆内的水压力活塞向螺旋承压板施加荷载;

(2)反力系统:由4个大直径反力地锚、地锚接杆、反力横梁组成;

(3)沉降观测装置:由2个小直径地锚、沉降支架、千分表等组成;

图2-8 螺旋板载荷试验仪示意图

1—传力杆;2—测计系统地锚;3—沉降支板;4—千分表;5—千斤顶;6—反力工字梁;7—反力地锚;8—测计系统横梁;9—螺旋承压板

(4)测压系统:对地面荷载源,通过安装在螺旋板上的应变式电阻传感器,和地面上的数字测力仪确定螺旋板上所受荷载源施加的荷载值;对地下荷载源,可通过施加的水压力获得施加的荷载值;一些螺旋承压板头还可以兼备测试试验深度内地基土孔隙水压力的功能;

(5)螺旋承压板:既是测试时钻进的钻头,又是到达试验深度后向地基土施加荷载的承压板。根据场地特点不同,分别有适于软土、硬土几种螺旋承压板型:①ϕ113mm,螺旋承压板面积100cm2,螺距25mm;②ϕ159.58mm,螺旋承压板面积200cm2,螺距40mm;③ϕ195.44mm,螺旋承压板面积300cm2;④ϕ252.23mm,螺旋承压板面积500cm2,螺距65mm;⑤ϕ298.55,螺旋承压板面积700cm2;与平板载荷试验不同的是,螺旋承压板在旋入试验深度过程中,由于螺旋板顺螺纹方向产生的切土效应,对测点地基土产生扰动,影响到测量的准确性。为此,需要对螺旋板的螺距、螺旋板材料厚度进行必要的限制,一般是取螺旋板直径与螺距之比值为4~5;螺旋板直径与板厚之比值为25为宜。

二、螺旋板载荷仪的安装与调试

螺旋承压板型号较多,这里简要介绍螺旋承压板的常见安装与调试过程。

1.准备工作

最主要的是对螺旋板探头进行标定:①绝缘测试:将探头批量放入压力不小15个大气压力的水容器中观察1天,其绝缘性能不发生变化;②将螺旋板探头置于率定架上,观察加荷与读数的线性关系,并写出率定报告备查。

2.现场安装

(1)要求在平整的场地上先标好测试孔位、反力地锚及测量支架地锚孔位。若雨季施工,应搭设临时防雨设施;

(2)安装地锚和螺旋板的顺序为:旋入4 根反力地锚→旋入沉降支架的2 根地锚→将螺旋板旋到预定测试深度(信号电缆随同旋入)。要特别注意:螺旋板头入土时,应按每转一圈下入一个完整螺距进行操作,即:旋入过程是每一旋次必须完成一整圈不间歇的旋入螺旋板,并尽量减少对土的扰动→安装反力横梁和测计系统横梁→调整好传力杆顶部至反力横梁的间距(使其恰好能安装液压千斤顶及相配套顶头、顶座等)→安装千斤顶→安装测计仪器、仪表并调整到合适位置(电子测量仪器需要预热,以保持性能稳定)。

3.测试方法

试验一般顺高程由上而下依次进行,完成一个点的深度测试后加接传力杆,将螺旋承压板旋入下一试验深度,进行新的试验。一般测点间距根据土层变化决定,大多以1m为常规间距;遇薄层时,也不应小于0.75m;如遇有软夹层,应事先设计好各测点深度。当土质均匀且层厚较大时,测点间距可取2~3m。

螺旋板载荷试验方法有两种,即应力法和应变法。

(1)应力法:用荷载等级控制沉降与时间关系的方法。①相对稳定法,也叫慢速法每级荷载施加后,间隔5min、5min、10min、10min、15min、15min测读一次沉降,以后间隔30min 测读一次沉降,当连续两小时内每小时沉降量都小于0.1mm时,可认为沉降已达相对稳定标准,即可施加下一级荷载;②等速加荷法,也叫快速法 根据土体情况和当地已有测试经验,采取分级施加荷载,每级荷载都保持固定时间间隔(5min~2h,由土的状态决定),每级荷载增量取预估极限承载力的1/10,直至达到极限承载力或土体破坏。

(2)应变法:试验以等沉降速率控制加载速率。试验中,当达到试验设计的沉降量时,就可施加下一级荷载。此法主要适用于在荷载作用下以塑性变形为主的粘性软土、淤泥(质)土等。沉降速率一般控制在0.25~2.0mm/min,对海相高灵敏度饱和淤泥质土、软塑状软粘性土,沉降速度选择在0.25~0.5mm/min为宜;一般粘性土、粘性软土可取0.5~2.0mm/min。如此逐级加荷,直至土体破坏。

应力法、应变法的适用范围:

测定地基土的承载力特征值可选用应力法,它适于土质相对较硬或以弹性变形为主的土体,而应变法则适于土质相对较软或以塑性变形为主的土体;测定和计算地基土的变形模量、固结系数时,必须选用慢速法才能达到计算精度;测定地基土不排水抗剪强度和不排水模量时,可采用应变法。

三、试验成果及其应用

由于假定在螺旋板载荷试验条件下并不考虑土体扰动对P—S曲线所产生的干扰,故对螺旋板载荷试验所产生的数据不必修正。根据试验数据和使用目的,可绘制相应类型的曲线,如:P—S曲线、

曲线、lgS—lgt曲线、S—lgt曲线等。

在P—S曲线上,我们可以找到3个特征点:Pz(螺旋板面以上地基土的自重压力);P0(地基土的比例极限压力);Pu(地基土的极限荷载),如图2-9所示。

1.用螺旋板载荷试验确定地基承载力

方法一:在S—P曲线上找到比例极限荷载P0,观察P0点与极限荷载Pu的位置关系,决定是否取P0为地基承载力特征值fak,方法同平板载荷试验。

方法二:作P—S/D曲线,在P—S/D曲线上,用S/D=0.02对应的荷载为地基承载力,D为螺旋板直径,如图2-10所示。

图2-9 螺旋板载荷试验P—S曲线的特征点

图2-10 用相对法确定螺旋板载荷试验中的地基承载力

2.计算地基土的变形模量

按照《岩土工程勘察规范》(GB 50021—2001)要求,地基土的变形模量E0(MPa)由下式计算:

土体原位测试与工程勘察

式中:D为承压板直径或边长(m);P为P—S曲线线性段的压力(kPa);S为与P对应的沉降量(mm);ω为与试验深度和土类有关的系数,可按表2-9选用。

表2-9 深度载荷试验计算系数ω取值表

注:D/Z为承压板直径和承压板底面深度之比。

除规范方法外,近年来国际上还广泛使用挪威工学院Jilmar Janbu教授提出的排水模量E和不排水模量Eu的算法:

(1)用沉降稳定法(慢速法)可求地基土的排水模量E:

土体原位测试与工程勘察

式中:S100、P 分别为最终沉降量(mm)和与之对应的固结荷载(kPa);D为螺旋板直径(mm)。

(2)用等速加荷法(快速法)可求土的不排水变形模量Eu(MPa):

土体原位测试与工程勘察

式中:ΔP/ΔS为P—S曲线初始直线段的斜率;K为螺旋板沉降系数;R为螺旋板半径(mm)。

根据Selvarai和Nicholas建议,K的取值范围是:K=0.6~0.75;其值代表螺旋板叶片与地基土的粘结程度,如下图所示。

土体原位测试与工程勘察

3.求径向排水固结系数

图2-11 用作图法求地基土固结度达到90%所需的时间t90

按试验数据绘制螺旋板载荷试验的S—

曲线(图2-11),取曲线前端直线段作延长线AB与时间轴相交于B点,并定义 B点以前时间为X,在时间轴找处1.31X点C,再作AC直线与

曲线相交于D,则D在时间轴上的正投影点E为地基土固结度达到90%所需的时间t90,由公式(2-27)可计算出地基土的径向排水固结系数Ch

土体原位测试与工程勘察

式中:T90为地基土固结度达到90%的时间因子,公式中的T90取值为0.335;t90为地基土固结度达到90%的时间(min),按图2-11给定方法确定;R为螺旋板半径(mm)。

4.计算地基土的不排水抗剪强度Cu

对饱水地基土,可用公式(2-28)计算:

土体原位测试与工程勘察

式中:Pu为饱水地基土在等速加荷法(快速法)条件下求得的极限荷载值;其系数(9~11.35)代表地基土的软硬程度,可根据土样条件适当确定该值的大小(见下页图)。

对硬粘性土,Kay&Parry推荐用公式(2-29)计算:

土体原位测试与工程勘察

土体原位测试与工程勘察

式中:Pu为饱水地基土在等速加荷法(快速法)条件下求得的极限荷载值;Pz为螺旋板载荷试验深度以上的地基土自重荷载。

❼ GB30871-2014中提到的动土作业定义是什么

动土作业简单讲就是,挖土、打桩、地锚入土深度0.5米以上;地面堆放负重在50kg/㎡以上;使用推土机、压路机等施工机械进行填土或平整场地的作业。

❽ 动土作业的动土作业安全要求

1、 动土作业必需办理《动土安全作业证》,没有《动土安全作业证》不准动土作业。
动土安全作业证 申请部门: 施工单位: 作业地点: 作业起止时间: 月 日 时至上 月 日 时 动土范围、内容、方式(包括深度、面积,并附简图): 项目负责人: 动土安全措施(包括围栏、警告标志、夜间警告灯等): 施工负责人: 施工地段负责人意见: 有关水、电、汽、工艺、设备、消防安全部门意见: 总图负责人意见: 机动部门审批意见: 机动部门负责人: 2、动土作业前,项目负责人应对施工人员进行安全教育;施工负责人对安全措施进行现场交底,并督促落实。
3、动土作业施工现场应根据需要设置护栏、盖板和警告标志,夜间应悬挂红灯示警;施工结束后要及时回填土,并恢复地面设施。
4、动土作业必须按《动土安全作业证》的内容进行,对审批手续不全、安全措施不落实的,施工人员有权拒绝作业。
5、严禁涂改、转借《动土安全作业证》,不得擅自变更动土作业内容、扩大作业范围或转移作业地点。
6、动土中如暴露出电缆、管线以及不能辨认的物品时,应立即停止作业,妥善加以保护,报告动土审批单位处理,采取措施后方可继续动土作业。
7、动土临近地下隐蔽设施时,应轻轻挖掘,禁止使用铁棒、铁镐或抓斗等机械工具。
8、挖掘坑、槽、井、沟等作业,应遵守下列规定:
(1)挖掘土方应自上而下进行,不准采用挖底脚的办法挖掘,挖出的土石不准堵塞下水道和阴井。
(2)在挖较深的坑、槽、井、沟时,严禁在土壁上挖洞攀登。作业时必须戴安全帽。坑、槽、井、沟上端边沿不准人员站立、行走。
(3)要视土壤性质、湿度和挖掘深度设置安全边坡或固壁支架。挖出的泥土堆放处所和堆放的材料至少要距坑、槽、井、沟边沿0.8米,高度不得超过1.5米。对坑、槽、井、沟边坡或固壁支撑架应随时检查,特别是雨雪后和解冻时期,如发现边坡有裂缝、松疏或支撑有折断、走位等异常危险征兆,应立即停止工作,并采取措施。
(4) 作业时应注意对有毒有害物质的检测,保持通风良好。发现有毒有害气体时,应采取措施后,方可施工。
(5) 在坑、槽、井、沟的边缘,不能安放机械、铺设轨道及通行车辆。如必须时,要采取有效的固壁措施。
(6)在拆除固壁支撑时,应从下而上进行。更换支撑时,应先装新的,后拆旧的。
(7) 所有人员不准在坑、槽、井、沟内休息。
(8) 上下交叉作业应戴安全帽,多人同时挖土应相距在2米以上,防止工具伤人。作业人员发现异常时,应立即撤离作业现场。
(9)在化工危险场所动土时,要与有关操作人员建立联系,当化工生产发生突然排放有害物质时,化工操作人员应立即通知动土作业人员停止作业,迅速撤离现场。
(10)作业前必须检查工具、现场支护是否牢固、完好,发现问题应及时处理。
(11)动土作业涉及断路时,必须按HG 23016的规定办理《断路安全作业证》。

❾ 静力基桩载荷试验

桩基工程属隐蔽工程,桩基质量直接关系到建筑物安全,出现问题后的加固及处理难度大,因而,桩基检测是桩基工程施工中的一个重要的环节。

基桩检测大致可分为三种方法:

1.直接法

承载力检测包括:单桩竖向抗压(拔)静载试验和单桩水平静载试验。单桩竖向抗压(拔)静载试验,用来确定单桩竖向抗压(拔)极限承载力,判定工程桩竖向抗压(拔)承载力是否满足设计要求,同时可以在桩身或桩底埋设测量应力(应变)传感器,以测定桩侧、桩端阻力;也可以通过埋设位移测量杆,测定桩身各截面位移量。单桩水平静载试验,除用来确定单桩水平临界和极限承载力、判定工程桩水平承载力是否满足设计要求外,还主要用于浅层地基土,求算其水平抗力系数,以便分析工程桩在水平荷载作用下的受力特性;当桩身埋设有应变测量传感器时,也可测量相应荷载作用下的桩身应力,并由此计算桩身弯矩。

2.半直接法

以桩的动态测量为主,在现场原型试验基础上,基于一些理论假设和工程实践经验,并加以综合分析才能最终获得检测项目结果的检测方法。主要包括以下两种:

(1)低应变法。在桩顶面实施低能量的瞬态或稳态激振,使桩在弹性范围内做弹性振动,并由此产生应力波的纵向传播;同时利用波动和振动理论对桩身的完整性做出评价的一种检测方法。有:反射波法、机械阻抗法、水电效应法等。

(2)高应变法。通过在桩顶实施重锤敲击,使桩产生的动位移量级接近常规的静载试桩的沉降量级,以便使桩周土阻力充分发挥,通过测量和计算,判定单桩竖向抗压承载力是否满足设计要求及对桩身完整性做出评价的一种检测方法。有:锤击贯入试桩法、波动方程法和静动法等。其中,波动方程法是我国目前常用的高应变检测方法。但这些方法在某些方面仍有较大的局限性,尚不能完全代替静载试验而作为确定单桩竖向抗压极限承载力的设计依据。

3.间接法

依据直接法已取得的试验成果,结合土的物理力学试验或原位测试数据,通过统计分析,以一定的计算模式给出经验公式或半理论、半经验公式的估算方法。如根据地质勘察资料进行单桩承载力与变形的估算。由于地质条件和环境条件的复杂性,及其对边界条件判断有很大的不确定性,所以,本法只适用于工程初步设计的估算。

一、基桩在静力载荷试验中的典型破坏模式及其标准曲线特征

在桩的静力载荷试验中,在相同的荷载条件下,由于不同的地质条件、施工工艺,可能表现出不同的破坏模式,如:在桩的竖向抗压静力载荷试验中常见到以下几种典型的荷载—位移(Q—S)曲线(图2-14)。它们各自有着不同的含义。

图2-14中的图b、图c桩端持力层为密实度和强度都较高的土层(如密实砂层、卵石层等),而桩周土为相对软弱土层,此时端阻所占比例大,Q—S曲线曲线呈缓变型,极限荷载下桩端呈整体剪切破坏或局部剪切破坏;图a桩端与桩身为同类型的一般土层,端阻力不大,Q—S曲线呈陡降型,桩端呈刺入冲剪破坏;如软弱土层中的摩擦桩的冲剪破坏,或者端承桩(尤其是长度较大的嵌岩桩)在极限荷载下由于桩身材料强度的破坏或桩身受压弯曲产生的破坏;图d、图e桩端有虚土或沉渣,该部位桩端土的初始强度低,压缩性高,当桩顶荷载达一定值后,桩底部土被压密,强度提高,Q—S曲线呈台阶状;桩身特定缺陷也可表现为双峰型Q—S曲线(如接桩时接头开裂的预制桩、有水平裂缝的灌注桩等在一定试验荷载作用下逐渐闭合)。

图2-14 相同荷载条件、不同的地质条件和施工工艺导致的基桩不同破坏模式和力学特性

Q—单桩桩顶所受竖向荷载值(kN);S—在竖向荷载作用下,基桩的沉降量(mm);Z—地表以下深度(m);Qsu—单桩侧阻极限值(kN);Qpu—单桩端阻极限值(kN)

典型的Q—S曲线应具有以下4个特征(图2-15):

(1)比例界限Qp(又称第一拐点),是Q—S曲线上起始的近似直线段终点所对应的荷载;

(2)屈服荷载Qy,是曲线上曲率最大点所对应的荷载;

(3)极限荷载Qu,是曲线上某一极限位移Su所对应的荷载,也称为工程上的极限荷载;

(4)破坏荷载Qf,是曲线的切线接近平行于S轴时所对应的荷载,是桩基失稳时的荷载。

在竖向拉、拔荷载作用下,常见的单桩破坏形式是沿桩-土界面间的剪切破坏。桩被拔出或者呈复合剪切面破坏,桩的下部沿桩-土界面破坏,而上部靠近地面附近,出现锥形剪切破坏,且锥形土体会同下面土体脱离并与桩身一起上移(图2-22)。当桩身材料抗拉强度不足(或配筋不足)时,也可能出现桩身被拉断现象。不同桩型的竖向抗拔力区别较大,如:为提高抗拔桩的竖向抗拔力,可采用人工扩底或机械扩底等施工方法,在桩端形成扩大头,以发挥桩底部的扩头抗拔阻力等。

水平荷载作用下的单桩,其工作性能主要体现在桩与土的相互作用上,当桩产生水平位移时,促使桩周土也产生相应的变形,产生的土抗力会阻止桩水平变形的进一步发展。在桩受荷初期,由靠近地面的地基土提供土抗力,土的变形处于弹性阶段;随荷载增大,桩水平变形量增加,表层土变形量随之增大,地基土开始出现塑性屈服,土抗力逐渐由深部土层提供,且土体塑性区自上而下逐渐扩大,最大弯矩断面随之下移;当桩本身的截面抗矩无法承担外部荷载产生的弯矩或桩侧土强度时,桩身截面受拉而产生侧开裂(折断)破坏。

图2-15 典型的Q—S曲线及其力学特征点

二、单桩静载荷试验的适用范围

在工程桩正式施工前,在地质条件具有代表性的场地上先施工几根桩进行静载试验,以确定设计参数的合理性和施工工艺的可行性(需要时,也可在桩身埋设测量桩身应力、应变、位移、桩底反力的传感器或位移杆,以测定桩分层侧阻力和端阻力)。若试桩直径和桩长均较大,可采用中、小直径桩模拟大直径桩进行静载荷试验,以减少试验成本。国家标准《建筑地基基础设计规范》(GB 50007—2002)规定:为保证桩基设计的可靠性,除地基基础设计等级为丙级的建筑物,可采用静力触探及标贯试验参数来确定单桩竖向承载力特征值外,其他建筑物的单桩竖向承载力特征值均应通过单桩竖向静载荷试验确定,且同一条件下的试桩数量,不宜少于总桩数的1%,且不应少于3根;为设计提供依据的静载试验应加载至破坏,试验应进行到能判定单桩极限承载力为止。对于以桩身强度控制承载力的端承桩,可按设计要求的加载量进行试验。检测数量在同一条件下不应少于3根,且不宜少于总桩数的1%;当工程桩总数在50根以内时,不应少于2根。

为确保实际单桩竖向极限承载力标准值达到设计要求,应根据工程重要性、地质条件、设计要求及工程施工情况进行单桩静载荷试验。下列情况之一的桩基工程,应在施工前采用静载试验对工程桩单桩竖向承载力进行检测:

(1)设计等级为甲级、乙级的建筑桩基;

(2)地质条件复杂、施工质量可靠性低的建筑桩基;

(3)本地区采用的新桩型或新工艺。

三、单桩抗压静载荷试验方法

试验方法主要有:压重载荷台静载试验法;锚桩反力静载试验法;Osterberg法(国内称自平衡法,见第九节)。

载荷台静载试验法(图2-16,图2-17)的测试装置主要包括:加荷及反力装置、桩顶沉降观测装置。荷载可由千斤顶、砂包、钢筋混凝土构件、大型水箱、砖、钢锭等压重物提供,千斤顶的反力由锚桩及反力横梁承担,量测桩顶沉降的仪表有千分表或精密水准仪,千分表安装在基准梁上,桩顶则相应设置沉降观测标点。

锚桩横梁反力装置(俗称锚桩法,图2-16)是大直径灌注桩静载试验最常用的加载反力系统,由试桩、锚桩、主梁、次梁、拉杆、锚笼(或挂板)、千斤顶等组成。锚桩、反力梁装置提供的反力不应小于预估最大试验荷载的1.2~1.5倍。当采用工程桩作锚桩时,锚桩数量不得少于4根;当试验加载值较大时,有时需要6根甚至更多的锚桩。具体锚桩数量要通过验算各锚桩的抗拔力来确定。锚桩的具体布置形式既要考虑现有试验设备能力,也要考虑锚桩的抗拔力。

图2-16 单桩抗压静力载荷试验

当采用堆载时应遵守以下规定:

(1)堆载加于地基的压应力,不宜超过地基承载力特征值;

(2)堆载的限值可根据其对试桩和对基准桩的影响确定;

(3)堆载量大时,宜利用桩(可利用工程桩)作为堆载的支点;

(4)试验反力装置的最大抗拔或承重能力,应满足试验加载的要求。

当试桩的最大加载量超过锚桩的抗拔能力时,可采用锚桩压重联合反力装置,在主梁和副梁上堆重或悬挂一定重物,由锚桩和重物共同承受千斤顶加载反力,以满足试验荷载要求。还可采用其他形式的反力装置,如适用于较小直径试桩的地锚反力装置。采用地锚反力装置应注意基准桩、锚杆、试验桩之间的间距应符合规范规定(表2-10);对岩面浅的嵌岩桩,可利用岩锚提供反力;对于静压桩工程,可利用静力压桩机的自重作为反力进行静载试验,但不能直接利用静力压桩机的加载装置,而应架设合适的主梁,采用千斤顶加载,基准桩的设置应符合规范。

图2-17 国内、外单桩抗压静力载荷试验现场工作图

表2-10 试桩、锚桩(或压重平台支墩边)和基准桩之间的中心距离

注:1.D为试桩、锚桩或地锚的设计直径或边宽,取其较大者;2.如试桩或锚桩为扩底桩或多支盘桩时,试桩与锚桩的中心距不应小于2倍扩大端直径;3.括号内数值可用于工程桩验收检测时,多排桩设计桩中心距离小于4D的情况;4.软土场地压重平台堆载重量较大时,宜增加支墩边与基准桩中心和试桩中心之间的距离、观测基准桩的竖向位移。

沉降测量宜采用位移传感器或大量程千分表,对于机械式大量程(50mm)千分表,全程示值误差和回程误差分别应不超过40 μm和8 μm,相当于满量程测量误差不大于0.1%FS,分辨力优于或等于0.01mm。

试验过程中,桩头部位往往承受较高的竖向荷载和偏心荷载,为保证不因桩头破坏而终止试验,一般应对桩头进行处理。其处理方法及解决方法是:

对预制方桩和预应力管桩,如果未进行截桩处理、桩头质量正常且单桩设计承载力合理时,可不进行处理;对预应力管桩、尤其是进行了截桩处理的预应力管桩,可采用桩头向下填芯处理,填芯高度一般为1~2m,也可在填芯时放置钢筋(笼),以增加桩头强度;填芯用的混凝土宜按C25~C30配制。

图2-18 桩帽结构示意图

还可以制作钢卡箍或用钢筋混凝土桩帽,套在桩头上进行保护。桩帽(图2-18)制作使用的具体方法如下:

混凝土桩桩头处理:应先凿掉桩顶部的松散破碎层和低强度混凝土,露出主筋后,冲洗干净桩头再浇注桩帽,并应符合下列规定:.

(1)桩帽顶面应水平、平整,桩帽中轴线与原桩身上部的中轴线严格对中,桩帽面积应大于或等于原桩身截面积,桩帽截面形状可为圆形或方形;

(2)桩帽主筋应全部直通至桩帽混凝土保护层之下,如原桩身露出主筋长度不够时,应通过焊接加长主筋;各主筋应在同一高度上,桩帽主筋应与原桩身主筋按规定焊接;

(3)距桩顶1倍桩径范围内,宜用3~5mm厚的钢板围裹,或距桩顶1.5倍桩径范围内设置箍筋,间距不宜大于150mm。桩帽应设置水平钢筋网片3~5层,间距80~150mm。以增加其整体强度;

(4)桩帽混凝土强度等级宜比桩身混凝土提高1~2级,且不得低于C30。

单桩静载荷试验开始时间的规定:预制桩打入地基后,如为砂土,需7d后进行;如为粘性土,需视土的强度恢复情况而定,一般不得少于15d;对于饱和软粘性土,不得少于25d;灌注桩应在桩身混凝土达到设计强度后,才能进行。

四、单桩静力载荷试验过程及其成果

在所有试验设备安装完毕之后,应进行一次全面检查。先对试桩施加一较小的荷载进行预压,目的是消除整个量测系统和被检桩本身由于安装、桩头处理等人为因素造成的间隙而引起的非桩身沉降;排除千斤顶和管路中之空气;检查管路接头、阀门等是否漏液等。一切正常后再卸载归零,待千分表读数稳定后记录千分表初始读数并做记录,便可开始进行正式加载试验。

桩的静载试验一般采用维持荷载法。我国静载试验的传统做法是采用慢速维持荷载法,但在工程桩验收检测中,也允许采用快速维持荷载法。1985年ISSMFE(International Society for Soil Mechanics and Foundation Engineering,国际土壤力学与基础工程学会)根据世界各国的静载试验有关规定,在推荐的试验方法中,建议快速维持荷载法加载为每小时一级,稳定标准为0.1mm/20min。常用试验记录表格见表2-11。根据所进行的测试内容不同(抗压、抗拉、水平载荷试验),规范也对维持荷载法的具体方法作了相应规定。

下面介绍几种常见的单桩抗压静载荷承载力试验方法。

单桩抗压静载荷承载力试验方法:

(1)慢速维持荷载法:具体做法是,按一定要求将荷载分级加到试桩上,每级荷载维持不变直到桩顶下沉量达到某一规定的相对稳定标准(每小时的沉降不超过0.1mm,并连续出现2次),然后继续加下一级荷载。当达到规定的终止试验条件时,停止加荷,再分级卸荷直到零载,试验周期3~7d。

表2-11 单桩抗压静载荷试验记录表

(2)快速维持荷载法:试验加载不要求每级的下沉量达到相对稳定,而以等时间间隔、连续加载。终止加载条件为:出现可判定极限荷载的陡降段或桩顶产生不停下沉,无法继续加载。

(3)等贯入速率法:试验以保持桩顶等速贯入土中,连续加载,按荷载-下沉量曲线确定极限荷载。

(4)循环加载卸载试验法:有的在慢速维持荷载中,在部分荷载区间进行加载卸载循环,有的在每一级荷载达到稳定后,重复加载卸载循环;也有以快速维持荷载法为基础对每一级荷载进行重复加载卸载循环。

1.慢速维持荷载法

按下列规定进行加载卸载和竖向变形观测:

(1)加载分级:加载应该分级进行,采用逐级等量加载。分级荷载量宜为最大加载量或预估极限承载力的1/10,其中第一级可取分级荷载的2倍。修订后的《建筑地基基础设计规范》(GB 50007—2002)规定加载分级不应小于8级。分级荷载宜为预估极限承载力的1/8~1/10;《建筑桩基技术规范》(JGJ 94—94)规定,分级荷载为预估极限承载力的1/10~1/15。显然,不同规范、不同行业标准对分级荷载的取值规定是不同的。

其他的特殊规定和要求:①桩底支承在坚硬岩(土)层上,桩的沉降量很小时,最大加载量不应小于设计荷载的2倍。②湿陷性黄土地区单桩竖向承载力静载荷浸水试验的加载有着特殊要求:

在进行单桩竖向承载力静载荷浸水试验加荷前,应确认该地基是否充分浸水。要求加载前和加载至单桩竖向承载力的预估值后,向试坑内昼夜浸水,以使桩身周围和桩底端持力层内的土均达到饱和状态。否则,单桩竖向静载荷试验测得的承载力偏大,且不安全。

(2)变形观测:每级加载后,间隔5min、10min、15min各测读一次,以后每隔15min测读一次,累计1h后每隔30min测读一次,并记录桩身外露部分裂缝开裂情况。

(3)卸载观测:每级卸载值为加载值的2倍。卸载时,每级荷载维持1h,按第15min、30min、60min测读桩顶沉降量后,即可卸下一级荷载;卸载至零后,应测读桩顶残余沉降量,维持时间为3h,测读时间为第15min、30min,以后每隔30min测读一次。

(4)变形相对稳定标准:连续2h每小时内的变形值都不超过0.1mm,认为已达到相对稳定,可加下一级荷载。

(5)终止加载条件:当出现下列情况之一时,即可终止加载:①当荷载—沉降(Q—S)曲线上有可判定极限承载力的陡降段,且桩顶总沉降量超过40mm;②用快速法时,在某级荷载作用下,桩顶沉降量大于前一级荷载作用下沉降量的5倍;③用慢速法时,在某级荷载作用下,桩顶沉降量大于前一级荷载作用下沉降量的2倍(即:ΔSn+1/ΔSn≥2;ΔSn为第n级荷载的沉降增量;ΔSn+1为第n+1级荷载的沉降增量)且经24h尚未达到稳定;④已达到反力装置的最大加载量;⑤已达到设计要求的最大加载量;⑥当荷载—沉降曲线呈缓变型时,可加载至桩顶总沉降量60~80mm,特殊情况下可根据具体要求加载至桩顶累计沉降量超过80mm。非嵌岩的长(超长)桩和大直径(扩底)桩的Q—S曲线,一般呈缓变型。由于非嵌岩的长(超长)桩的长细比大、桩身较柔,弹性压缩量大,桩顶沉降较大时,桩端位移还很小;而大直径(扩底)桩虽桩端位移较大,但尚不足以使端阻力充分发挥,在桩顶沉降达到40mm时,桩端阻力一般不能充分发挥。国际上普遍认为:当沉降量达到桩径的10%时,才可能达到破坏荷载;⑦当工程桩作锚桩时,锚桩上拔量已达到允许值;⑧ 桩顶荷载为桩受拉钢筋总极限承载力的0.9倍时。

2.快速维持荷载法

按下列规定进行观测:

(1)每级荷载施加后,按第5min、15min、30min测读桩顶沉降量,以后每隔15min测读一次;

(2)试桩沉降相对稳定标准:加载时每级荷载维持时间不少于1h,最后以15min时间间隔的桩顶沉降增量小于相邻15min时间间隔的桩顶沉降增量;

(3)当桩顶沉降速率达到相对稳定标准时,再施加下一级荷载;

(4)卸载时,每级荷载维持15min,在第5min、15min测读桩顶沉降量后,即可卸下一级荷载;卸载至零后,应测读桩顶残余沉降量,测读时间为第5min、10min、15min、30min,以后每隔30min测读一次,总维持时间为2h。

五、单桩竖向极限承载力确定方法

(1)作荷载—沉降(Q—S)曲线、S—lgt曲线和其他辅助分析所需的曲线;

(2)当陡降段明显时,取相应于陡降段起点的荷载值为单桩竖向极限承载力;

(3)如果在某级荷载作用下,桩顶沉降量大于前一级荷载作用下沉降量的2倍,且经24h尚未达到稳定标准,单桩竖向抗压极限承载力值取前一级荷载值;

(4)Q—S曲线呈缓变型时,取桩顶总沉降量S=40mm所对应的荷载值为单桩竖向极限承载力,当桩长大于40m时,宜考虑桩身的弹性压缩。根据沉降量确定极限承载力的基本原则是,尽可能挖掘桩的极限承载力而又保证有足够的安全储备。对直径D大于或等于800mm的桩,可取Q—S曲线上S=0.05 D对应的荷载值;

(5)单桩竖向抗压极限承载力,取S—lgt曲线尾部出现明显向下弯曲的前一级荷载值;

(6)如果因为已达加载反力装置或设计要求的最大加载量,或锚桩上拔量已超出允许值而终止加载时,若桩的总沉降量不大,桩的竖向抗压极限承载力取值为不小于实际最大试验荷载值;

(7)参加统计的试桩,当满足其极差不超过平均值的30%时,可取其平均值作为单桩竖向极限承载力。极差超过平均值的30%时,宜增加试桩数量并分析离差过大的原因,并结合工程具体情况,确定极限承载力(对桩数为3根及3根以下的柱下桩台,取最小值);

(8)以外推法求桩的竖向抗压极限承载力:在许多情况下,桩的静载试验加载往往达不到极限荷载而终止试验;对工程桩的试验也不允许将桩压至极限破坏状态,这给判定桩的极限承载力造成一定困难。根据研究和大量经验对比,已经建立了一些拟合数学模型和应用实测Q—S曲线的作图方法,用来推测终止试验后的Q—S曲线,并确定桩的极限承载力。

1.作图法

在Q—S曲线段上,选取曲率变化较大的一段曲线,在该曲线段两侧取两点(如图2-19中M1,M6),把这2点对应的桩顶沉降等分成若干相等的沉降量ΔS(一般不少于四等分),过各等分点作Q轴平行线与Q— S曲线相交得点M2、M3、M4……,过上述各交点作S轴的平行线与Q轴相交,得P1、P2、P3、P4……,过上述各点作与Q轴成45 度的斜线P1A、P2B、P3C、P4D……,P1A 与 M2P2的上延长线交于A点、P2B与M3P3的上延长线交于B点、P3C与M4P4的上延长线交于C点……,作一条过上述各点的直线AG,上述各点大致落在一条直线上,该直线与Q轴的交点F对应的Q值,即为单桩竖向抗压极限承载值Qu,如图2-19所示。

图2-19 作图法求单桩竖向抗压极限承载值Qu

2.双曲线法

双曲线法又称斜率倒数法。假设桩的静载试验Q—S曲线为一双曲线,其方程可写成:

土体原位测试与工程勘察

式中:M,C为待定参数。其确定方法是:在Q—S曲线的已知段选取两个点(Q1,S1),(Q2,S2),按式(2-32)、式(2-33)求得待定参数M,C为:

土体原位测试与工程勘察

土体原位测试与工程勘察

3.最小二乘法

用最小二乘法对实测Q—S数据进行拟合,则有:

土体原位测试与工程勘察

土体原位测试与工程勘察

土体原位测试与工程勘察

式中:Si为桩测点处桩身沉降量(mm);Qi为测点处的桩身轴力(kPa)。

在数学意义上,桩的极限承载力值Qf为:

土体原位测试与工程勘察

工程中,桩的极限承载力值Qu为:

土体原位测试与工程勘察

也可取沉降量等于40mm所对应的荷载做为桩的极限承载力值:

土体原位测试与工程勘察

4.指数方乘法

假设Q—S曲线为指数曲线时,则有如下的方程式:Q=Qu(1-e-αs),经数学变换后得:

土体原位测试与工程勘察

式中:Q为桩所受轴向静荷载(kPa);Qu同上;α为拟合系数,取值详见国家标准 GB/T19496-2004《钻心检测离心高强混凝土抗压强度试验方法》。

图2-20 用指数方乘法求桩的极限承载力值

S-lg(1-Q/Qu)为一直线,根据Qu可能的大概范围,可假设若干个Qu,再根据静载试验结果(Qi,Si),计算出lg(1-Q/Qu),用S-lg(1 Q/Qu)法可以绘出若干根指数曲线。若Qu小于真实值时,曲线向上弯曲;若Qu大于真实值时,曲线向下弯曲。在上弯与下弯曲线之间必可得一根近似直线,对应于该近似直线的Qu,即为桩的极限荷载(图2-20)。

六、单桩竖向抗压承载力特征值Ra的确定

无论加载速率的快慢,应按参加统计的试桩数取试验值的平均值,并要求其极差不得超过平均值的30%。取此平均值的一半作为单桩竖向抗压承载力特征值Ra

《建筑地基基础设计规范》(GB 50007—2002)规定,单桩竖向抗压承载力特征值Ra为单桩竖向抗压极限承载力统计值的1/2(即:单桩竖向抗压极限承载力统计值除以安全系数2)。

七、多年冻土地基单桩竖向静载荷试验

多年冻土中试桩施工后,应待冻土地温恢复正常后再进行载荷试验。试验桩宜经过一个冬期后再进行试验。试桩时间宜选在夏末、冬初,地温出现最高值的一段时间内进行。

单桩静载荷试验视试验条件和试验要求不同,可选用:慢速维持荷载法或快速维持荷载法进行试验:

A.采用慢速维持荷载法时,应符合下列要求:

加载级数不应少于6级,第一级荷载应为预估极限荷载的1/4倍,以后各级荷载可为极限荷载的0.15倍,累计试验荷载不得小于设计荷载的2倍;

在某级荷载作用下,桩在最后24h内的下沉量不大于0.5mm时,应视为下沉已稳定,方可施加下一级荷载;在某级荷载作用下,连续10d达不到稳定时,应视为桩-地基系统已遭破坏,可终止加载;

试验的测读时间,应符合下列规定:

a)沉降:加载前读一次,加载后读一次,此后每2h读一次。在高载下,当桩下沉加快时,观测次数应增加,缩短间隔时间;

b)地温:每24h观测一次。

卸载时的每级荷载值为加载值的两倍。卸载后应立即测读桩的变位,此后每2h测读一次,每级荷载的延续时间为12h,卸载期间应照常观测地温。

B.采用快速维持荷载法时,应符合下列要求:

快速加荷时每级荷载的间隔时间,应视桩周冻土类型和冻土条件确定,一般不得小于24h,且每级荷载的间隔时间应相等;

加载的级数一般不得少于6~7级,荷载级差可采用预估极限荷载的0.15倍。当桩在某级荷载作用下产生迅速下沉时,或桩头总下沉量超过40mm时,即可终止试验;

快速加载时,桩顶下沉和地温的观测要求,应与上述慢速加载时相同。

C.多年冻土地基单桩竖向极限承载力的确定,应符合下列规定:

慢速加载时,破坏荷载的前一级荷载,即为桩的极限荷载;

快速加载时,找出每级荷载下桩的稳定下沉速度(即稳定蠕变速率),并绘制桩的流变曲线图(图2-21),曲线延长线与横坐标的交点F应作为桩的极限长期承载力。

图2-21 桩的流变曲线示意图

多年冻土地基单桩竖向静载荷试验设计值的取值,应符合下列规定:

慢速加载时,应按参加统计的试桩数,取试验值的平均值,并要求其极差不得超过平均值的30%,取此平均值的一半作为单桩承载力的设计值。

快速加载时,应按参加统计的试桩数取试验值的平均值,并要求其极差不得超过平均值的30%,取此平均值的一半作为单桩承载力的设计值。

阅读全文

与地锚钻快速入土电动工具相关的资料

热点内容
外置轮胎检测装置 浏览:828
电动工具的执行标准是什么 浏览:487
机械键盘键位不灵怎么解决 浏览:820
学机械类用什么文具 浏览:337
大棚自动喷水手机控制装置 浏览:142
制冷专业工资低什么原因 浏览:60
为什么机械表掉螺丝 浏览:791
轴承与轴距间隙多少合适 浏览:683
暖气片冷怎么调阀门 浏览:732
求自动吸自动放装置 浏览:609
丘型阀门怎么开 浏览:274
浙江医疗设备吸塑外壳哪里有销售 浏览:297
贱人工具箱cad2008加载 浏览:329
dn50水铜阀门厂 浏览:460
牛身上哪个部位绑定设备 浏览:636
加气阀门紧 浏览:660
移动通讯器材包括哪些 浏览:157
地暖气片5阀门 浏览:211
电工电子综合实验装置能做什么实验 浏览:886
水电自动装置检修工txt下载 浏览:875