① matlab 的ga工具箱 stopping criteria 中 “function tol...
^(1)
[x,feval]=fminunc(@(x)x(1)^2 4*x(2)^2 9*x(3)^2-2*x(1)-18*x(2),[3 1 2])
Warning: Gradient must be provided for trust-region method;
using line-search method instead.
② 如何用遗传算法工具箱中的函数画出适应度函数曲线
matlab有遗传算法工具箱。
核心函数:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]
注意】matlab工具箱函数必须放在工作目录下
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。
③ 但是ranking函数确确实实是matlab GA工具箱中的函数
那可能输入不应该是double类型的吧……反正它这么说。GA工具箱里其他的函数可以用么?
④ MATLAB中ga函数(神经算法)调用提示输入变量太多,求大神指点下ga函数的用法
matlab自带工具箱和gaot中ga函数名字冲突,想用哪一个将其路径置顶提前即可。
⑤ matlab遗传算法工具箱中ga函数的用法
为0-1矩阵,范围怎么设呢
⑥ matlab遗传算法工具箱求解多元函数显示输入参数数目不足求解答,非常感谢
错误的主要原因是你写的函数有问题。函数应该这样来表示:
function y = Test1(x)
a=x(1);b=x(2);
y=a+b;
end
使用优化工具箱,选择ga,运行可以得到如下结果
⑦ 求matlab遗传算法工具箱GA Toolbox。。并求解释如下
GA自己写一个就好了,也挺简单的。
虽然很多函数都能知道表达式,但是仍然版有很多函数不能用倒权数来求解,所以要知道空间的极值和最值就必须用遍历的方法。然而对于实数范围内或者大规模数据的离散数据情况下,遍历画图的方法会耗费很大的计算复杂度,因为你并不知道是在参数范围的边缘还是中间有最值,有多少个最值也不知道。GA就提供了一种基于种群的搜索优化方法,可以快速的收敛到优秀的解的个体,但是要防止陷入局部最优。
简而言之就是遍历的搜索方法要用时10小时完成的事情,GA快速优化可能1分钟或者10分钟搞定,占用内存也少。
⑧ Matlab GA toolbox 约束函数写法
function [c, ceq] = const(x, A)
定义函数的时候光明正大的把A当参数传进去。
在调用的时候,生成一个匿名函数:
A = ...;
constA = @(x) const(x, A);
ga(..., constA, ...);