『壹』 什么是电磁兼容及抑制电磁干扰的有效方法
电磁兼容(EMC)的基本含义是,保证电子设备在共同的电磁环境中执行各自功能的共存状态而互不干扰。电子产品的电磁兼容设计,就是在电子产品设计时,设法抑制(消除)电磁干扰,提高电子产品在电磁环境中的工作稳定性和可靠性。
抑制(消除)电磁干扰主要有接地、屏蔽和滤波三种方法,三种方法各具特色,也相互关联。
1) 接地。在电磁兼容设计时,接地是十分重要的环节。良好的接地可以消除各种噪声的产生,减小电磁干扰的作用,降低对屏蔽和滤波的要求。常用的接地方法有浮地、单点接地和多点接地三种。采用浮地的的方法,不仅可以将电路或设备与公共地或可能引起环流的公共导线隔离开来,而且还可以使不同电位的电路之间的配合变得容易,它的主要优点是抗干扰性能好。单点接地的方法在低频条件下效果最好,多点接地的方法则在高频条件下有较佳表现。与单点接地相比,多点接地的主要优点是接线比较简单,而且在接地线上出现高频驻波的现象也明显减少。但多点接地系统中的众多地线回路对线路的维护提出了更高的要求。因为设备本身的腐蚀、冲击振动和温度变化等因素,都会使接地系统出现高阻抗,使其接地效果变差。
为了回避单点接地和多点接地的缺点,充分发挥各自的优点,在实际设计时,通常采用混合接地方式。所谓混合接地,就是对电子系统的各部分工作情况作一分析,只将那些需要就近接地的点直接(或需要高频接地的点通过旁路电容)与地平面相连,而其余各点采用单点接地的办法。
2) 屏蔽。屏蔽能有效地抑制通过空间传播的电磁干扰(即辐射电磁干扰) 。采用屏蔽的目的有两个:一是限制辐射电磁能量越出某一区域;二是防止外来的辐射电磁能量进入某一区域。屏蔽按其机理可以分为电场屏蔽、磁场屏蔽和电磁场屏蔽。在电源设计时,主要是采用全密封的金属外壳封装来实现屏蔽,达到抑制辐射电磁干扰的目的。
3) 滤波。滤波能有效地抑制通过载流导体传
播的电磁干扰(即传导电磁干扰) 。采用滤波的目的有两个:一是限制传导电能通过载流导体越出某一区域;二是防止外来的传导电能通过载流导体进入某一区域。
传导电磁干扰分为差模干扰和共模干扰两种。在实际工作中,抑制DC/ DC 电源传导电磁干扰通过载流导体转播,主要是采取在电源的输入端和输出端设置差模共模滤波器。例如,安插在电源线与电子设备之间的电源线滤波器就是抑制电源线传导电磁干扰的重要手段,它对提高电子设备在电磁环境中运行的可靠性(电磁兼容性)有着重要作用。
『贰』 怎样屏蔽电磁的干扰
首先我们要搞清楚屏蔽和电磁兼容性,电磁兼容性(Electromagnetic Compatibility)缩写EMC,就是指某电子设备既不干扰其它设备,同时也不受其它设备的影响。电磁兼容性和我们所熟悉的安全性一样,是产品质量最重要的指标之一。安全性涉及人身和财产,而电磁兼容性则涉及人身和环境保护。
电磁波会与电子元件作用,产生干扰现象,称为EMI(Electromagnetic Interference)。例如,TV荧光屏上常见的“雪花”,便表示接受到的讯号被干扰。
屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。 (1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。(3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。
许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。在这种概念指导下结果是失败。因为,电磁屏蔽与屏蔽体接地与否并没有关系。真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。这些不导电的蠢枝缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。解决这种泄漏的一个方法是在缝隙处填绝枯充导电弹性材料,消除不导电点。这就像在流体容器的缝隙处填充橡胶的道理一样。这种弹性导电填充材料就是电磁密封衬垫。 在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。实际上这是不确切的。因为缝隙或孔洞是否会泄漏电磁波,取决于缝隙或孔洞相对于电磁波波长的尺寸。当波长远大于开口尺寸时,并不会产生明显的泄漏。
电磁屏蔽的机理.a、当电磁波到达屏蔽体表面时,由于空气与金属的交界面上阻抗的不连续,对入射波产生的反射。这种反射不要求屏蔽材料必须有一定的厚度,只要求交界面上的不连续; b、未被表面反射掉而进入屏蔽体的能量,在体内向前传播的过程中,被屏蔽材料所衰减。也就是所谓的吸收; c、在屏蔽体内尚未衰减掉的剩余能量,传到材料的另一表面时,遇到金属-空气阻抗不连续的交界面,会形成再次反射,并重新返回屏蔽体内。这种反射在两个金属的交界面上可能有多次的反射。 总之,电磁屏蔽体对电磁的衰减主要是基于电磁波的反射和电磁波的吸收。
现在有许多关于产品辐射和传导发射限制的国家标准和国际标准。有些还规定了对各种干扰的最低敏感度要求。通常,对于不同类型的电子设备有不同的标准。虽然一个产品要获得市场带宏敏的成功,满足这些标准是必要的,但符合这些标准是自愿的。
但是,有些国家给出的是规范,而不是标准,因此要在这些国家销售产品,符合标准是强制性的。有些规范不仅规定了标准,还赋予当局罚没不符合产品的权力。
应用范围.笔记本电脑、GPS、ADSL和移动电话等3C产品都会因高频电磁波干扰产生杂讯,影响通讯品质。另若人体长期暴露于强力电磁场下,则可能易患癌症病变。因此防电磁干扰已是必备而且势在必行的制程。
导电漆.EMI导电漆喷涂技术具有高导电性、高电磁屏蔽效率、喷涂操作简单(同表面喷漆操作一样只须要在塑胶外壳内喷上薄薄一层导电漆)等特点,广泛应用于通讯制品(移动电话)、电脑(笔记本)、便携式电子产品、消费电子、网络硬件(服务器等)、医疗仪器、家用电子产品和航天及国防等电子设备的EMI屏蔽。适用于各种塑胶制品的屏蔽(PC、PC+ABS、ABS等)。喷涂导电漆解决了因做金属屏蔽罩受空间限制、操作、成本压力的限制,因其导电漆喷涂操作极其简单,做到了塑胶金属化,而受到越来越多的关注及推广。逐渐取代了以往贴锡箔、铜纸、做金属屏蔽罩的工艺
『叁』 如何抑制仪表的干扰
消除噪声源是积极主动的措施。比如插接件接触不良、虚焊等情况,对于这类干扰源是可以消除的。从原则上讲,对于噪声源应予以消除。但是,实际上很多的噪声源是难以消除或不能消除的。例如有时候泵房中的仪表,泵运行时电机的电磁干扰就是不能够消除的。这时候就必须采取防护措施来抑制干扰。
(1)串模干扰的抑制
串模干扰与被测信号所处的地位相同,因此一旦产生串模干扰,就不容易消除。所以应当首先防止它的产生。防止串模干扰的措施一般有以下这些:
1.信号导线的扭绞。
由于把信号导线扭绞在一起能使信号回路包围的面积大为减少,而且是两根信号导线到干扰源的距离能大致相等,分布电容也能大致相同,所以能使由磁场和电场通过感应耦合进入回路的串模干扰大为减小。
2.屏蔽。
为了防止电场的干扰,可以把信号导线用金属包起来。通常的做法是在导线外包一层金属网(或者铁磁材料),外套绝缘层。屏蔽的目的就是隔断“场”的耦合,抑制各种“场”的干扰。屏蔽层需要接地,才能够防止干扰。如图4我们可以清楚地看到屏蔽层接地和不接地的两种情况,我们可以分析一下这两种情况:
3.滤波。
对于变化速度很慢的直流信号,可以在仪表的输入端加入滤波电路,以使混杂于信号的干扰衰减到最小。但是在实际的工程设计中,这种方法一般很少用,通常,这一点在仪表的电路设计过程中就已经考虑了。
(2)共模干扰的抑制
由于仪表系统信号多为低电平,因此,共模干扰也会使仪表信号产生畸变,带来各种测量的错误。防止共模干扰通常采取的措施如下:
1.接地。通常仪表和信号源外壳为安全起见都接大地,保持零电位。信号源电路以及仪表系统也需要稳定接地。但是如果接地方式不恰当,将形成地回路导入干扰。如图3中就是这种情况,两点接地,由于存在地电位差,因此产生共模干扰。因此,通常,仪表回路采用在系统处单点接地。但是事实上,信号源侧对地不可能绝缘,因此,从这个意义上来说,不可能彻底的消除地电位差引进的干扰。所以为了提高仪表的抗干扰能力,通常在低电平测量仪表中都把二次仪表“浮地”,也就是将二次仪表与地绝缘。以切断共模干扰电压的泄漏途径,使干扰无法进入。在实际应用中,我们通常将屏蔽和接地结合起来应用,往往能够解决大部分的干扰问题。如果将屏蔽层在信号侧与仪表侧均接地,则地电位差会通过屏蔽层形成回路,由于地电阻通常比屏蔽层的电阻小的多,所以在屏蔽层上就会形成电位梯度,并通过屏蔽层与信号导线间的分布电容耦合到信号电路中去,因此屏蔽层也必须一点接地。并且,信号导线屏蔽层接地应与系统接地同侧。
『肆』 怎样防止电子秤被干扰
电子秤的主要的干扰有:
1、电源干扰:电源干扰往往以浪涌的形式出现,如雷电或电源线上引入的感应电荷。它能引起保险丝断、损害打印电路板、损害桥式整流器等。一个完整的接地系统对电源的干扰起着良好的保护作用。接地系统良好,能减小故障带来的损失,系统接地对此类故障能起到有效的防止作用。
2、交流电干扰:交流电干扰可能损坏元器件及微处理机。对交流电源,零线与地线之间电压不应超过02V,其地线要接在接地桩上。对此类干扰好的办法是良好的接地以及使用对干扰有滤波作用的稳压源。
3、感应干扰:感应干扰是由电感破坏磁场所产生,这个干扰以尖的高电压形式出现,它比原来的电压要高得多,这个尖的电压能引起各种故障,并对设备造成危害。它主要表现为电容性耦合、电感性耦合、电磁场辐射三种形式,对电路主要造成共模形式的干扰。克服电场耦合干扰有效的办法是屏蔽。屏蔽电场耦合干扰时,导线的屏蔽层不要两端连接当地线使用,因在有地环电流时,这将在屏蔽层形成磁场,干扰被屏蔽的导线。应该把屏蔽层单点接地,一般选择它的任一端接地。抑制磁场干扰的办法是屏蔽干扰源。但把它们都用导磁材料屏蔽起来很难做到,故只能采用一些被动的抑制技术,远离干扰源,同时要尽量避免平行走线。
4、无线电频率干扰:无线电频率干扰可能造成电子衡器显示不准,这时要检查接地设备是否用了长而细的导线,线的屏蔽是否良好,滤波器工作是否正常。
、静电干扰:静电干扰要比射频干扰的破坏力大。当设备受潮时,静电干扰就会出现,而且这种干扰比较常见。静电干扰明显的可能破坏传感器及敏感组件,造成设备关闭,显示混乱。克服这种干扰的办法就是设备接地,信号线屏蔽等。
应对方法:
1、提供设备与近旁物体间的低阻抗连接,以减少人身电击危险。
2、给接地故障电流提供返回电源的低阻抗通路,使熔断器或断路器得以动作。
3、给雷电感应电流提供低阻抗的对地泄放通路
4、给静电电荷提供对地泄放通路,以防产生电火花或电弧。接地抗干扰技术其一是避开地环电流的干扰,其二是降低公共地线阻抗的耦合干扰。
『伍』 如何防止电磁干扰
1、利用屏蔽技术减少电磁干扰。
2、利用接地技术消除电磁干扰。
3、利用布线技术改善电磁干扰。
4、使用磁环对干扰进行抑制。
5、选用镍锌铁氧体或锰锌铁氧体。
6、利用滤波技术降低电磁干扰。
(5)电磁仪表盘如何防止干扰扩展阅读:
变频驱动与电磁干扰:
在许多国家,尤其在欧洲,对任何系统可能散发的电磁干扰有严格的限制。
由于数码涡旋压缩机的加载和卸载是机械操作,数码涡旋系统产生的电磁干扰可忽略不计。这一独特的特性,不仅使数码系统无需昂贵的电磁抑制电子装置,也增加了其可靠性和简易性。
对电站、广播、电视、通信、导航、精密设备、医院、地铁控制装置等场所更适用,更环保。