A. 科学家利用超声波原理发明了什么装置
声呐、超声波清洗、焊接、超声波检测、超声波乳化、超声波催化等.
B. 科学家利用超声波原理发明了什么装置
声呐、超声波清洗、焊接、超声波检测、超声波乳化、超声波催化等。。。
C. 你知道超声波发明了什么吗
超声波是一种波长极短的机械波,在空气中波长一般短于2cm(厘米)。它必须依靠介质进行传播,无法存在于真空(如太空)中。它在水中传播距离比空气中远,但因其波长短,在空气中则极易损耗,容易散射,不如一般声波和次声波传得远。
人类可以感知的声波的音高是由频率决定的,频率越高,音高越高,如吉他的六根弦的音高是不一样的,钢琴上的八十八个音的音高也是不一样的,但当高到两万赫兹以上,人就听不到了。这种高频率的人耳听不见的声波叫做超声波,但容易被蝙蝠的耳朵听见。
在空气中,超声波是指波长小于2厘米的机械波(一说1.7厘米,2cm波长对应17000Hz,1.7cm波长对应20000Hz,实际上没有固定标准,只是一个便于记忆的数值罢了),其波长甚短,低于人耳听觉的一般下限(2cm),人们将这种听不见的机械波叫做超声波,次声波的波长则一般长于20米(一说17米,20m波长对应17Hz,17m波长对应20Hz),高于听觉的波长上限。在实际应用中的超声波往往还与短波可听声波范围重合,波长短于3.4cm(10000Mhz)的机械波都可以视作超声波研究。
其波长比一般声波短得多,因而可以用来切削、焊接、钻孔等。由于其波长短,因而具有许多特点:首先是波长短造成的传播的各向异性,再者由于它波长短,衍射能力差,虽具有良好的各向异性,不过在空气中损耗大,传不远,穿透力比较差,容易散射。工业与医学上常用超声波进行超声探测。超声和次声以及可听声本质上是一致的,它们的共同点都是一种机械波,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声波波长短,在一定距离内可沿直线传播而衍射少,具有良好的各向异性,但相比可听声和次声波其穿透力较差,容易散射。
希望我能帮助你解疑释惑。
D. 人类根据超声波发明了什么
超声波是频率高于20000赫兹的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距,测速,清洗,焊接,碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大约等于人的听觉上限而得名。 理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度.这就是超声波加湿器的原理.咽喉炎.气管炎等疾病,呼唤斤年时斤百 很难血流到达患病的部位.利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效.利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎,从而减缓病痛,达到治愈的目的。超声波在医学方面应用非常广泛,像现在的彩超、B超、碎石(例如胆结石、肾结石之类的)等。
E. 人们用蝙蝠的超声波发明了什么
蝙蝠是靠气流运动引起声带的振动而发声的。蝙蝠等一类动物能发出频率高于2万赫兹的超声波,人耳对这种频率的声音只能望尘莫及。因为人类的听力有限,听到的声波频率约在16~2万赫兹的范围内。我们常常看见倒挂在树枝上的蝙蝠,不停地转动着嘴和鼻子。其实,它每秒钟在向周围发出10~20个信号,每个信号约包含50个声波振荡,这样,信号中不会出现两种完全相同的频率。飞行时,蝙蝠在喉内产生超声波,通过口或鼻孔发射出来。声波遇到猎物会反射回来,正在飞行的夜蛾对反射波产生压力,飞行速度愈快,压力愈大,回声声波的频率就愈高。蝙蝠正是用这种回声,探测夜蛾和其他物体,并据此知道作为食物的夜蛾的位置,从而立即追捕它们。。 它们头部的口鼻部上长着被称作“鼻状叶”的结构,在周围还有很复杂的特殊皮肤皱褶,这是一种奇特的超声波装置,具有发射超声波的功能,能连续不断地发出高频率超声波。 以昆虫为食的蝙蝠在不同程度上都有回声定位系统,因此有“活雷达”之称。借助这一系统,它们能在完全黑暗的环境中飞行和捕捉食物,在大量干扰下运用回声定位,发出超声波信号而不影响正常的呼吸。如果碰到障碍物或飞舞的昆虫时,这些超声波就能反射回来,然后由它们超凡的大耳廓所接收,使反馈的讯息在它们微细的大脑中进行分析。这种超声波探测灵敏度和分辩力极高,使它们根据回声不仅能判别方向,为自身飞行路线定位,还能辩别不同的昆虫或障碍物,进行有效的回避或追捕。蝙蝠就是靠着准确的回声定位和无比柔软的皮膜,在空中盘旋自如,甚至还能运用灵巧的曲线飞行,不断变化发出超声波的方向,以防止昆虫干扰它的信息系统,乘机逃脱的企图.会飞的“活雷达” 蝙蝠善于在空中飞行,能作圆形转弯、急刹车和快速变换飞行速度等多种“特技飞行”。白犬,隐藏在岩穴、 树洞或屋檐的空隙里;黄昏和夜间,飞翔空中,捕食蚊、蝇、蛾等昆虫。蝙蝠捕食大量的害虫,对人有益,理应得 到保护。 到了夏季,雌蝙蝠生出一只发育相当完全的幼体。初生的幼体长满了绒毛,用爪牢固地挂在母体的胸部吸乳, 在母体飞行的时候也不会掉下来。 蝙蝠有用于飞翔的两翼,翼的结构和鸟翼不相同,是由联系在前肢、后肢和尾之间的皮膜构成的。前肢的第二、 三、四、五指特别长,适于支持皮膜;第一指很小,长在皮膜外,指端有钩爪。后肢短小,足伸出皮膜外,有五趾, 趾端有钩爪。休息时,常用足爪把身体倒挂在洞穴里或屋檐下。在树上或地上爬行时,依靠第一指和足抓住粗糙物 体前进。蝙蝠的骨很轻,胸骨上也有与鸟的龙骨突相似的突起,上面长着牵动两翼活动的肌肉。 蝙蝠的口很宽阔,口内有细小而尖锐的牙齿,适于捕食飞虫。它的视力很弱,但是听觉和触觉却很灵敏。一些 实验证明,蝙蝠主要靠听觉来发现昆虫。蝙蝠在飞行的时候,喉内能够产生超声波,超声波通过口腔发射出来。当 超声波遇到昆虫或障碍物而反射回来时,蝙蝠能够用耳朵接受,并能判断探测目标是昆虫还是障碍物,以及距离它 有多远。人们通常把蝙蝠的这种探测目标的方式,叫做“回声定位”。蝙蝠在寻食、定向和飞行时发出的信号是由 类似语言音素的超声波音素组成。蝙蝠必须在收到回声并分析出这种回声的振幅、频率、信号间隔等的声音特征后, 才能决定下一步采取什么行动。 靠回声测距和定位的蝙蝠只发出一个简单的声音信号,这种信号通常是由一个或二个音素按一定规律反复地出 现而组成。当蝙蝠在飞行时,发出的信号被物体弹回,形成了根据物体性质不同而有不同声音特征的回声。然后蝙 蝠在分析回声的频率、音调和声音间隔等声音特征后,决定物体的性质和位置。 蝙蝠大脑的不同部分能截获回声信号的不同成分。蝙蝠大脑中某些神经元对回声频率敏感,而另一些则对二个 连续声音之间的时间间隔敏感。大脑各部分的共同协作使蝙蝠作出对反射物体性状的判断。蝙蝠用回声定位来捕捉 昆虫的灵活性和准确性,是非常惊人的。有人统计,蝙蝠在几秒钟内就能捕捉到一只昆虫,一分钟可以捕捉十几只 昆虫。同时,蝙蝠还有惊人的抗干扰能力,能从杂乱无章的充满噪声的回声中检测出某一特殊的声音,然后很快地 分析和辨别这种声音,以区别反射音波的物体是昆虫还是石块,或者更精确地决定是可食昆虫,还是不可食昆虫。 当2万只蝙蝠生活在同一个洞穴里时,也不会因为空间的超声波太多而互相干扰。蝙蝠回声定位的精确性和抗 干扰能力,对于人们研究提高雷达的灵敏度和抗干扰能力,有重要的参考价值
F. 根据蝙蝠回声定位的原理,人类制造了什么
雷根据蝙蝠的“回声定位”原理,科学家发明了雷达、声呐。
科学家经过反复研究,终于揭开了蝙蝠能在夜里飞行的秘密。它一边飞,一边从嘴里发出一种声音。这种声音叫做超声波,人的耳朵是听不见的,蝙蝠的耳朵却能听见。超声波像波浪一样向前推进,遇到障碍物就反射回来,传到蝙蝠的耳朵里,蝙蝠就立刻改变飞行的方向。
科学家模仿蝙蝠探路的方法,给飞机装上了雷达。雷达通过天线发出无线电波,无线电波遇到障碍物就反射回来,显示在荧光屏上。驾驶员从雷达的荧光屏上,能够看清楚前方有没有障碍物,所以飞机在夜里飞行也十分安全。
G. 超声波给人类带来什么贡献
补充楼上的:早在1830年,,F.Savrt曾用齿轮,第一次产生2.4×100000Hz的超声波,1876年F.Galton用气哨产生3×100000Hz的超声,1927年R.W.WOOD和A.E.LOOMIS首次发表对超声能量作用的实验报告,为今天超声学奠定了基础.
我国超声学研究始于1956年的12年科学规划,应用在探伤、加工、种子处理、显示、医疗、粉碎、乳化及染料等,1965年开始研究了表面波换能器,进入80年代,我国超声学面向实际应用.B超医疗开始投入生产。超声加工、超声研磨、超声探测、超声焊接、超声清洗、超声催化与滤矿及超声技术育种等。
(一)工程学方面的应用:水下定位与通讯、地下资源勘查等
。
(二)生物学方面的应用:剪切大分子、生物工程及处理种子等
。
(三)诊断学方面的应用:A型、B型、M型、D型、双功及彩超等
。
(四)治疗学方面的应用:理疗、治癌、外科、体外碎石、牙科等
。
目前,超声技术研究和应用的范围,已从船舶、冶金、机械等扩大到二十多个工业部门,并取得了很好的社会效益和经济效益。
H. 人类根据超声波发明了什么
探测方面(利用超声波的指向性和声波的反射):B超,无损探伤,声呐;超声空化方面(利用超声波在液体中可以使液体产生负压气泡的性质和功能):超声清洗,超声声化学;还有超声打孔,超声焊接等;
I. 超声波是怎样为人类做贡献的
1、超声波的应用
1.超声检验。超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥控和超声成像技术。
2.超声处理。利用超声的机械作用、空化作用、热效应和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生物学研究等,在工矿业、农业、医疗等各个部门获得了广泛应用。
3.基础研究。超声波作用于介质后,在介质中产生声弛豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过程,并在宏观上表现出对声波的吸收(见声波)。通过物质对超声的吸收规律可探索物质的特性和结构,这方面的研究构成了分子声学这一声学分支。普通声波的波长远大于固体中的原子间距,在此条件下固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,波长可与固体中的原子间距相比拟,此时必须把固体当作是具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,称为声子(见固体物理学)。特超声对固体的作用可归结为特超声与热声子、电子、光子和各种准粒子的相互作用。对固体中特超声的产生、检测和传播规律的研究,以及量子液体——液态氦中声现象的研究构成了近代声学的新领域——
2超声波在农业中的应用
2.1 超声波处理与加工的基本原理
超声波处理与加工设备主要是由四个部分组成:超声波发生器、换能器、超声波聚能器及超声波发生器和换能器之间的匹配电路。如图1所示,超声波发生器产生一定高频电能提供给超声换能器,由超声换能器将电能量转化成机械能,然后通过超声波聚能器将机械能放大,将声能作用在待处理的物质上。超声波的生物效应应用十分广泛,其主要的生物效应是源于空化作用引起的机械效应和热效应等。超声波处理与加工的基本原理主要是利用液体动力学的空化现象。超声空化是指超声波激活气泡的各种动力表现,这些表现可能是较为有规律而缓和的稳态空化或者是很激烈而短暂的瞬态空化。瞬态空化泡绝热收缩至崩溃瞬间,泡内可呈现高温和几千个大气压的高压,并伴有强大的冲击波或射流等。超声波的辐照因其机械作用,能使液体媒质质点运动增强,质量传输加速,还能影响边界层、膜、细胞壁和液泡。超声的空化作用还能破坏细胞并使酶变性等。以下所举的超声波在农业中的一些新应用基本上都是循着上述的基本原理而实现的。
2.2 超声测定土壤中的铅[1]
铅是一种对人体有害的元素,它是土壤分析中的常测元素。采用悬浮液直接进样火焰原子吸收光谱法测定土壤中的铅时,由于土壤样品的取样量大,使得悬乳液的粘度大、不易分散均匀而影响进样的缺点。采用先用超声波处理悬浮液后进样的方法,可使进样顺利和使悬浮液稳定时间延长;十二烷基硫酸钠(SDS)增敏可以提高悬浮液直接进样火焰原子吸收光谱法测定的灵敏度。该方法快速、简单、准确,适用于各种土壤样品中铅的测定。
2.3 超声处理种子
超声育种,应用超声波处理种子,早在前苏联就已有了不少研究。根据外国文献所载,少量的超声波能刺激细胞分裂,中等量的超声波会抑制细胞分裂,大量的能引起细胞死亡。在上世纪,就有人用超声波对菠菜和白菜种子进行实验。其实验结果显示,在对白菜种子用超声波处理1分钟和2分钟时,其种子的发芽率为92%~96%,而未用超声波处理的白菜种子发芽率为88%。在对菠菜种子用超声波处理1分钟后,其出土率为85%,而未用超声波处理的菠菜种子出土率为40%[2] 。用超声波处理的种子在日后增产也比较显著。低频脉冲超声波对小麦幼苗变异较明显。经超声波照射的水培变异幼苗,出现率为8.57±8.25%,对照的自然变异出现率为1.00±1.28%;田间种植变异幼苗出现率为18.21±2.54%,对照的自然变异出现率为14.58±2.59%。经照射的咸农68小麦单株粒重超过亲本的家系达55.17%,超亲达1%显著水准占超亲家系87.50%。经照射的四方穗小麦,单株粒重超亲家系达69.23%,达到1%显著水准的超亲家系占77.78[3] 。
2.4 超声处理对植物生长的影响
超声培苗,与其他环境应力一样,超声波作为应力的一种作用形式,对植物的生长发育有重要的影响。近年来,在超声处理下,从对植物生长变化的宏观观察到对植物生理生化的研究,从对植物细胞、组织、分裂生长的影响研究到对超声处理对植物作用机理的探讨,均取得了很多的成效。超声处理可以影响植物体或者某些器官的生存和生长。对器官生长影响的研究主要集中在根上,温和的超声处理能促进生根[4] 。植物细胞经超声波处理,出现了一致现象,即低剂量、短时间的温和处理能明显加速和诱导植物细胞的分裂,刺激细胞生长,加速原生质体的蛋白合成;而处理时间延长,处理剂量加大则会造成负面的不可恢复的影响。利用超声波对保鲜液处理,能使插花推迟鲜重始降时间,增大最大花茎,延长插花寿命[5,6] 。可见,一定频率和强度的超声波处理可以强化植物的一些生理生化指标,促进植物的生长发育。
2.5 超声处理对植物呼吸作用的影响
关于植物呼吸作用的研究一直是植物生理学研究的一个热点,特别对农作物来说,其呼吸作用的大小直接关系到产量的高低,所以它的研究对农业的发展具有十分重要的理论和实际意义。1975年Albu E研究发现低频率超声波(25kHz)处理蔬菜之后,一年生植物(如番茄和黄瓜)的呼吸强度下降,而两年生植物(如卷心菜和洋葱)的呼吸强度上升[7] 。自此我们可以推测,利用超声处理相关的农作物可以提高作物的产量。
2.6 超声波犁田
传统的翻地犁需要笨重的机器牵引,这不仅会压实深层的土壤,使其不能保持水分和养料;而且翻起的地表土会被风和雨水侵蚀。这是许多农民的一大心病。此外,由于多次的翻犁,植物的根以及腐烂的残留植物被翻出地表,他们会散发出二氧化碳气体。约旦的农机工程师奈达·阿布哈德发明了利用超声波松土。他的实验结果显示:松土可达土壤深度20cm。这完全满足了一般农作物的松土深度。
2.7 超声处理植物根系[8]
糖类是植物体内的主要成分之一,可溶性糖主要指的是单糖和低聚糖。磷酸单糖在植物细胞中的含量不高,但它们都是光合作用及呼吸作用过程中的主要中间产物,在代谢过程中极为重要。经超声波刺激后,根系中的可溶性糖含量比对照组高大约29.6%。丰富的蛋白质是细胞进行一系列生理活动的物质基础,经过超声波刺激后,根系中的可溶性蛋白增加了35.3%,高水平的可溶性蛋白质含量保证了细胞旺盛的分裂生长能力,这说明了经过超声波刺激后,植物根部细胞分裂旺盛,生长能力强。
2.8 超声除虫[9]及促进蚕卵孵化
用250W-CFS 超声波发生器(中原电子仪器厂出品)匹配自带的清洗槽,果实内已生有虫子的板栗浸在清洗槽里的自来水中,在19.5~20.5kHz下,开机处理15min,结束后去水晾干,保存2周。切开板栗果实检查,长10mm左右的幼虫仍存活,而6mm以下的幼虫死亡。加长处理时间, 虫子的死亡率基本一致。另外,有人曾用类似的方法及设备处理过蚕卵(约半分钟内),直接结果是蚁蚕的孵化时间达到基本一致;追踪结果为比同样条件下长大的成虫做的蚕茧的抽丝率提高。也曾有人试图用超声处理水果(苹果、梨等)中害虫,但大多无果而终。
2.9超声催产
3.超声波在工业的应用
超声波物位 液位计
超声波流量计
超声波探伤仪
超声波限位开关
超声波清洗装置
应用行业:
行业类别 电子及电
器工业机器 光学机械、宝
石加工、钟表业 汽车、摩
托车产业 化纤纺织 食品
酿造 航空、飞机行业
4.超声波在军事的应用
声波武器
一般人认为,声音与听觉是连在一起的,但它作为一种空气波,在聚焦后可成为
攻击武器,对许多人来说,这恐怕还是件新鲜事。近日,位于美国加州圣地亚哥
市的美国技术公司就研制出一种用声波作子弹的枪。
主动声纳:基本原理同蝙蝠探路。