『壹』 机床被称为制造之母为何中国的机床如此落后,军工发展却如此迅速
我国自行研制的重型机床的加工精度已经达到了0.008毫米虽然与国际先进水平的0.005毫米还有差距。而导致中高端机床国内的不如国外这种现象出现的原因也有很多,比如卖不出去,待遇低,成本高等等。事实上军工对重型机床的需求比较高,而我国的重型机床与国外的差距不算大,此外,国内的军工企业也有进口国外的机床。可以说,在国产重型机床和进口机床的作用下,我国的武器装备才有了这么大的提升。
『贰』 普通车床常见故障怎么处理解决
车床是生产中常见的机械生产加工装备,它集电力电子技术、电机技术、自动化控制技术、传感技术、自动检测技术、计算机控制技术、机床、液压及气压传动技术和加工工艺等于一体,是机电一体化的典型产品。
作为自动化设备,它性能优越,具有高精度、率和高适应性的特点,但也十分容易发生故障。一般而言,车床在机械加工车间约占机床总数的一半,这主要是因为它的应用范围很广,可以加工各种回转表面,包括端面、外圆、内圆、锥面等,它甚至还可以加工螺纹、回转沟槽、回转成型面和滚花等。车床结构简单,主要组成部件一般有床身、床头箱、变速箱、进给箱、光杆、丝杆、溜板箱、刀架、床腿和尾架等部分,它的工作原理主要是依靠主运动和进给运动,通过车刀和工件的相对运动,使被加工的部件毛坯被切削成具备一定几何形状、尺寸和表面质量的零件。然而,在普通车床在使用过程中,很可能会出现一些故障,若不及时排除就会直接影响生产的进行,并使车床的精度和使用寿命迅速下降。
因此,对车床进行故障诊断与维修是非常重要的。我们发现,导致车床发生故障的因素主要有以下几种:机械锈蚀、机械磨损失效、电子元器件老化、插件接触不良、电流电压波动、温度变化、机床本身有隐患或灰尘等。为了提高车床的使用效率,我们有必要认真分析、总结其发生故障的原因,摸索排除故障的方法,并做好车床的保养工作。
一、造成车床使用故障的原因
故障的表现形式是多种多样的,发生的原因也常常由很多因素综合形成。普通车床使用过程中常见的故障,就其性质大概可以分为车床本身运转不正常与车床加工工件产生缺陷2大类。造成车床使用故障的原因具体可以分为以下几种:
(一)零部件质量问题:车床本身的机械部件、电器元件等因自身质量原因而在工作中失灵,或者有些零件发生严重磨损,精度超差甚至已经损坏。
(二)安装和装配精度较差:车床安装、装配主要涉及溜板刮配,床身装配,溜板箱、进给箱及主轴箱的安装等,任何部分出现差错就有可能降低车床的精度。
(三)日常维护和保养不当:车床维护、保养的好坏可以直接影响工件的加工质量和生产效率。保养的内容主要是清洁、润滑和进行必要的调整,维护则是使车床保持良好状态、延长使用寿命、提高生产效率所必须进行的日常工作。
(四)使用不合理:不同的车床有着不同的技术参数,反映了其不同的加工范围和加工能力。如果在使用过程中没有严格按车床的加工范围和本工种操作规程来操作,就不能保证车床的合理使用。
二、车床使用故障的类型及解决方法
车床的故障类型很多,按发生故障的部件不同可分为主机故障和电气故障;按性质的不同可分为车床本身运转不正常和加工零件产生缺陷;按发生故障的系统部位不同,通常可分为电气系统故障、机械系统故障、液压(气压与液压大致相同)系统故障等等。下面就几类常见的车床故障及其排除方法进行简要的叙述。
(一)轴承类故障
传动轴是车床实现机械加工的核心部件,它在工作时承载着主要的载荷,所以是最容易发生故障的车床部件之一。如果车床主轴上单向推力球轴承等零部件产生损坏,机床用户可以准确地诊断并很快更换。如果传动轴断裂,机床用户一般可采用改大其直径尺寸、改进其内部结构、针对现场机床转速不同重新布局齿轮等方法来解决问题。
(二)主轴发热导致故障
在车床上,主轴一般都与滚动轴承或滑动轴承组装成一体,并以很高的转速旋转,从而产生较大热量。主轴轴承是主轴箱内的主要热源,如果它制造的热量没有及时排出,将导致轴承过热,使车床相应部位温度升高,从而产生热变形,严重时会使主轴与尾架不等高。这不仅影响车床本身精度和加工精度,而且会把轴承甚至主轴烧坏。主轴过热的原因可归纳为:主轴轴承间隙过小使摩擦力和摩擦热增加;在长期的全负荷车削中,主轴刚性降低,发生弯曲,传动不平稳而发热。排除该故障时应注意:要调整主轴轴承间隙使之合适;应控制润滑油的供给,疏通油路;尽量避免车床承担长期负荷。
(三)车床振动导致故障
车床在加工过程中产生振动是不可避免的,但是当振动十分剧烈时,不仅会降低被加工物品的加工精度,影响生产率,还可能加剧车床磨损,使刀具耐用度下降,这对硬质合金、陶瓷等制作的脆性刀具尤为明显。车床振动的原因有:工作时螺栓松动,安装不正确;胶带等旋转件的跳动太大,引起车床振动;主轴中心线的径向摆动过大。排除该故障时应注意:调整并紧固地脚螺栓;磨削刀具以保持切削性能;校正刀尖安装位置,使其略高于工作中心;校正胶带轮等旋转件的径向圆跳动;设法调整减小主轴摆动,若无法调整,可采用角度选配法来减小主轴摆动。
(四)噪音剧烈导致故障
噪音是车床发生故障的先兆,因此正确分析噪音产生的原因,对迅速找出故障并排除至关重要。车床开动之后,由于各运动副之间作旋转或往复直线运动,周期性地接触和分开,所以它们之间因相互运动会产生一定的振动。一般而言,噪音会随着温度的升高、负荷和磨损的增大、润滑不良等而增大。该故障的排除方法:可按运动副的接触情况调整、修复或更换零部件,使轴恢复应有的精度等;检查并疏通不畅通的管道,使需要润滑的部位有适量、清洁、符合规定要求的润滑油等。
(五)刀架出现常见故障
对于刀架的常见故障,如果刀盘不动,可能出现的问题是机械卡阻、刀架电机烧坏或接触器、控制继电器损坏。现场应逐步排查故障原因,缩小故障范围,最后准确定位故障。如果刀盘上某刀位连续回转不停,一般是某刀位对应的霍尔元件损坏所致,将其更换即可解决。如果刀盘换刀时不到位或过位,一般是磁钢位置在圆周方向相对霍尔元件太靠前或太靠后所致,可在刀架锁紧状态下用内六方扳手先松开磁钢盘,再转动适当角度,使磁钢与霍尔元件位置相对即可。
(六)溜板箱自动进给手柄容易脱开的故障
导致溜板箱自动进给手柄容易脱开的原因有:脱落蜗杆的弹簧压力不够;蜗杆托架上的控制板与杠杆的倾角改变,迫使进给箱的移动手柄跳开或交换齿轮脱开。相应故障的排除方法:调整脱落蜗杆的弹簧压力,使脱落蜗杆在正常负荷下不脱落;焊补控制板并将挂钩处修锐;调整弹簧,若定位孔磨损可铆补后重新打孔。
(七)床鞍下沉故障
普通车床经过较长时间使用后,常常会发生床鞍下沉的现象,导致车床工作不正常,严重影响车床工作效率,甚至造成车床完全丧失工作能力。造成床鞍下沉的原因主要有:床身导轨面磨损,床鞍下导轨面磨损。在日常修理及床鞍下沉不严重时,无需修复机床导轨,通常可改变纵走刀小齿轮技术参数及溜板箱上纵向移动刻度盘刻度,以改善纵走刀小齿轮与床身齿条的啮合状况。这种方法具有简便易操作、技术难度较小、修理周期较短等优点,不过其修理效果是有限的。在床鞍下沉严重或机床大修时,应采用恢复床鞍高度的方法。
(八)机械漏油故障
漏油同样是日常工作中经常出现的车床故障之一,它不仅会浪费油料,造成直接经济损失,还会影响车床的工作性能。同时,长期渗漏对车床的安装也会带来不良后果,甚至影响日后的工作。出现这种问题应该尽快处理,以免造成严重后果。
三、车床的维护保养策略
为了保证车床在工作时正常运转,有效预防和减少车床各类故障的发生,车床的维护保养成为必不可少的日常工作之一。
(一)应定期检修车床极易发生故障或故障发生率较高的零部件、系统,比如润滑系统等等,尽量在早期发现故障的端倪,并及时检修维护,从而将故障消除于无形,保障车床的正常运行。
(二)技术人员在日常的维护保养中,不仅仅要检查有可能发生故障的零部件,更重要的是要及时对车床的各个子系统、子模块进行功能测试,并进行系统地清理和维护,以提高各个零部件的工作可靠性,从日常维护保养做起,实现车床服役寿命的最大化。
(三)技术员要做好维护保养及故障检修的记录工作,应详细记录从故障发生、分析判断到排除全过程中出现的各种问题及采取的所有措施,还要记录涉及到的相关参数和软件。
四、结语
综上所述,车床故障原因及其排除方法是在长期实践中总结出来的,又经实践证明具有良好的经济和社会效益,因而十分切实可行。普通车床常见的机械故障在各种工作中经常会发生,工作人员只有熟练地掌握了车床的工作原理,具有丰富的现场经验,才能较快地找到故障,从而判断原因,并在最短的时间内将其排除。技术人员还应对自己的工作进行总结,并尝试摸索、学习自主修复和保养车床,从而将故障诊断与预防式检修相结合,最终真正实现车床服役寿命的最大化。
『叁』 我国数控技术落后的原因
我国机床工具工业整体落后的深层原因是长期采用粗放型增长模式,创新机制薄弱,在国际强手面前缺乏竞争能力
以上提到,我国机床工具工业的广大企业,经过十年奋斗取得了巨大进步。这些进步都是实实在在的。但与此同时,我们又必须面对这样一个严峻的现实:国内制造业急需的现代高效加工技术和装备大部分依赖进口,国产机床工具只占很少份额。在高端技术领域,更是进口技术的一统天下。这两种看似矛盾的情况同时存在,原因究竞何在?我认为:我国机床工具行业尽管在一系列具体领域取得了明显进步,但就总体而言,仍然在传统产业的轨道上运行,没有产生质的变化,更没有达到当年发达国家转轨变型时那种“脱胎换骨”的程度。行业整体竞争力没有明显提高,这就是落后的原因所在。从下面一组数据中可以非常清楚地看到这一点。
2005年,我国生产机床45万台,其中数控机床5.9万台,都达到创记录的高水平。但是,我们不能忽略一个数字,那就是普通机床年产量达到39.1万台,仍然占据绝对主导地位,产值数控化率不到35%(日、美等国都在80%以上)。此外,在国产数控机床中,有70%还是经济型的低端产品,整体层次还很低。
工具工业的情况显得更严峻一些。尽管经过多年努力,一批走在前列的工具企业已经在我国高效刀具市场占有一席之地,但就全行业整体而言,仍然是传统的标准化刀具在唱主角。2005年,我国生产高速钢材8.4万吨,硬质合金约1.5万吨,约占全球工具材料消费量的40%。但消耗了这么多的资源,生产的刀具产品的销售收入仅占全球刀具销售额的12%左右,这是一个很大的反差,说明我们产品的整体水平尚处于低位。目前,在全球切削刀具消费量中,以硬质合金为主体的高效刀具已占有70%以上的份额,而我国的生产格局则正好相反,传统的标准化高速钢刀具仍占70%,与需求的发展不同步。
从上面一组数字可以看出,我国机床工具工业的整体发展水平与发达国家的差距仍然十分巨大。这是一个必须承认的客观事实。也就是说,从全行业的角度看,仍然在传统产业模式下低水平重复运行,没有真正转到现代技术的高水平发展轨道上来。用经济学家的术语来说,就是粗放型的经济增长模式没有得到根本改变。这就是我国机床工具行业整体落后的原因所在。所以,解决的对策也很明确——彻底改变粗放型的增长方式。
当然,说到经济增长方式的转变,就涉及到我国经济发展的全局问题,解决起来远没有那么简单。很多问题错综复杂,并非仅在机床工具行业内就能解决得了,这就是当前发展中面临的最大难点。举例来说,前文提到,近年来我国制造业出现了良好的发展势头,一批走在前面的企业加快了与现代国际制造技术接轨的步伐,对高效切削加工技术和装备出现了强劲需求,而国内装备工业无法满足其需求,不得不依靠大量进口。但问题的另一方面是,我国制造业中有数量更多的企业仍在采用落后的装备,依靠廉价劳动力,大量生产和出口廉价的机械设备和零部件。这些企业对普通机床和传统标准刀具的需求在国内市场仍占有主要份额。由于这种市场需求的客观存在,使得大量的机床工具企业难以下决心彻底转向现代制造技术的新轨道。不仅如此,一些企业还在盲目争抢市场中滑向了质量下降、技术倒退的下坡路。所以,我国经济发展中各行业普遍采用的粗放型经济增长方式,已经使得整个产业链上的一大批企业在一个狭窄的空间里相互挤压和倾轧,生存空间愈来愈小,走上了难以自拔的恶性循环。
由此可见,机床工具工业当前面临的发展困局,并不是一种孤立现象,而是我国经济发展全局面临难题的一个缩影。过去机床工具行业解决发展问题的思路,往往很少从这样的角度去认识问题,而只是从行业内部就事论事,采取一些“对症疗法”,抓几个专项,推动产品结构调整,因此不可能从根本上解决问题。
『肆』 为何中国的机床如此落后,军工发展却如此迅速
我们中国人只要下决心想弄的东西就没有整不成的!原子弹复不复杂?我们不也照样整出来了吗!还有一点就是以我们一国之力想样样都跟世界水平看齐那是不可能的!一国之力毕竟有限,美国先进但也不是样样先进,但美国有个好处是中国不能比的,就是美国能买着世界先进的东西,我们不行,一些生产先进设备的国家故意封锁我们,这使我们所遇到的困难比美国大!没办法!我们只能自己干,这是我们的悲哀!谁让满世界都怕中国强大呢!
对于沈阳机床和大连机床国家应该扶持,然后多管齐下,每年对企业进行审计,对领导和员工进行评级加级效工资,如果企业连续三年亏损,狠查腐败,主要负责人降级撤换,无能力员工辞退,用高工资在全世界招机床精英!
潜心研发,工匠精神,提高待遇,能者就上,庸人下课,拒绝内招,堵住后门!希望中国机床迎来春天,被人卡脖子会很被动的,机床!制造业之母,没有好机床设备一切都是空话!制造出来,还要虚心听听客户心声,优点,缺点,不断完善才能走的更远。
关键是好东西永远不会便宜,但国人普遍的想法是既然多花钱,为什么不买进口的?所以,国产高精度机床由于市场太小,反而出现亏损,很多企业也就不愿意花钱去搞,变成了一个死循环。
『伍』 数控机床故障分析与维修经验总结
数控机床故障分析与维修经验总结
数控机床加工柔性好,精度高,生产效率高。但是也会经常产生故障,这就需要维修人员有足够的知识和能力去判断分析床故障分析!为此,我为你整理了一篇维修老手的经验总结,一起来学习吧!
数控机床的应用越来越广泛,其加工柔性好,精度高,生产效率高,具有很多的优点。但由于技术越来越先进、复杂,对维修人员的素质要求很高,要求他们具有较深的专业知识和丰富的维修经验,在数控机床出现故障才能及时排除。
在数控机床的应用越来越广泛。我公司有几十台数控设备,数控系统有多种类型,几年来这些设备出现一些故障,通过对这些故障的分析和处理,我们取得了一定的经验。下面结合一些典型的实例,对数控机床的故障进行系统分析,以供参考。
一、NC系统故障
1.硬件故障
有时由于NC系统出现硬件的损坏,使机床停机。对于这类故障的诊断,首先必须了解该数控系统的工作原理及各线路板的功能,然后根据故障现象进行分析,在有条件的情况下利用交换法准确定位故障点。
例一、一台采用德国西门子SINUMERIK SYSTEM3的数控机床,其PLC采用S5─130W/B,一次发生故障,通过NC系统PC功能输入的R参数,在加工中不起作用,不能更改加工程序中R参数的数值。通过对NC系统工作原理及故障现象的分析,我们认为PLC的主板有问题,与另一台机床的主板对换后,进一步确定为PLC主板的问题。经专业厂家维修,故障被排除。
例二、另一台机床也是采用SINUMERIK SYSTEM 3数控系统,其加工程序程序号输入不进去,自动加工无法进行。经确认为NC系统存储器板出现问题,维修后,故障消除。
例三、一台采用德国HEIDENHAIN公司TNC 155的数控铣床,一次发生故障,工作时系统经常死机,停电时经常丢失机床参数和程序。经检查发现NC系统主板弯曲变形,经校直固定后,系统恢复正常,再也没有出现类似故障。
2.软故障
数控机床有些故障是由于NC系统机床参数引起的,有时因设置不当,有时因意外使参数发生变化或混乱,这类故障只要调整好参数,就会自然消失。还有些故障由于偶然原因使NC系统处于死循环状态,这类故障有时必须采取强行启动的方法恢复系统的使用。
例一、一台采用日本发那科公司FANUC-OT系统的数控车床,每次开机都发生死机现象,任何正常操作都不起作用。后采取强制复位的方法,将系统内存全部清除后,系统恢复正常,重新输入机床参数后,机床正常使用。这个故障就是由于机床参数混乱造成的。
例二、一台专用数控铣床,NC系统采用西门子的SINUMERIK SYSTEM 3,在批量加工中NC系统显示2号报警“LIMIT SWITCH”,这种故障是因为Y轴行程超出软件设定的极限值,检查程序数值并无变化,经仔细观察故障现象,当出现故障时,CRT上显示的Y轴坐标确定达到软件极限,仔细研究发现是补偿值输入变大引起的,适当调整软件限位设置后,故障被排除。这个故障就是软件限位设置不当造成的。
例三、一台采用西门子SINUMERIK 810的数控机床,一次出现问题,每次开机系统都进入AUTOMATIC状态,不能进行任何操作,系统出现死机状态。经强制启动后,系统恢复正常工作。这个故障就是因操作人员操作失误或其它原因使NC系统处于死循环状态。
3.因其它原因引起的NC系统故障有时因供电电源出现问题或缓冲电池失效也会引起系统故障。
例一、一台采用德国西门子SINUMERIK SYSTEM 3的数控机床,一次出现故障,NC系统加上电后,CRT不显示,检查发现NC系统上“COUPLING MODULE”板上左边的发光二极管闪亮,指示故障。对PLC进行热启动后,系统正常工作。但过几天后,这个故障又出现了,经对发光二极管闪动频率的分析,确定为电池故障,更换电池后,故障消除。
例二、一台采用西门子SINUMERIK 810的数控机床,有时在自动加工过程中,系统突然掉电,测量其24V直流供电电源,发现只有22V左右,电网电压向下波动时,引起这个电压降低,导致 NC系统采取保护措施,自动断电。经确认为整流变压器匝间短路,造成容量不够。更换新的整流变压器后,故障排除。
例三、另一台也是采用西门子SINUMIK 810的数控机床,出现这样的故障,当系统加上电源后,系统开始自检,当自检完毕进入基本画面时,系统掉电。经分析和检查,发现X轴抱闸线圈对地短路。系统自检后,伺服条件准备好,抱闸通电释放。抱闸线圈采用24V电源供电,由于线圈对地短路,致使24V电压瞬间下降,NC系统采取保护措施自动断电。
二、伺服系统的故障
由于数控系统的控制核心是对机床的进给部分进行数字控制,而进给是由伺服单元控制伺服电机,带动滚珠丝杠来实现的,由旋转编码器做位置反馈元件,形成半闭环的位置控制系统。所以伺服系统在数控机床上起的作用相当重要。伺服系统的故障一般都是由伺服控制单元、伺服电机、测速电机、编码器等出现问题引起的。下面介绍几例:
例一、伺服电机损坏
一台采用SINUMERIK 810/T的数控车床,一次刀塔出现故障,转动不到位,刀塔转动时,出现6016号报警“SLIDE POWER PACK NO OPERATION”,根据工作原理和故障现象进行分析,刀塔转动是由伺服电机驱动的,电机一启动,伺服单元就产生过载报警,切断伺服电源,并反馈给NC 系统,显示6016报警。检查机械部分,更换伺服单元都没有解决问题。更换伺服电机后,故障被排除。
例二、一台采用直流伺服系统的美国数控磨床,E轴运动时产生“E AXIS EXECESSFOLLOWING ERROR”报警,观察故障发生过程,在启动E轴时,E轴开始运动,CRT上显示的E轴数值变化,当数值变到14时,突然跳变到471,为此我们认为反馈部分存在问题,更换位置反馈板,故障消除。
例三、另一台数控磨床,E轴修整器失控,E轴能回参考点,但自动修整或半自动时,运动速度极快,直到撞到极限开关。观察发生故障的过程,发现撞极限开关时,其显示的坐标值远小于实际值,肯定是位置反馈的问题。但更换反馈板和编码器都未能解决问题。后仔细研究发现,E轴修整器是由Z轴带动运动的,一般回参考点时,E轴都在Z轴的一侧,而修整时,E轴修整器被Z轴带到中间。为此我们做了这样的试验,将E轴修整器移到Z轴中间,然后回参考点,这时回参点也出现失控现象;为此我们断定可能由于E轴修整器经常往复运动,导致E轴反馈电缆折断,而接触不良。校线证实了我们的判断,找到断点,焊接并采取防折措施,使机床恢复工作。
三、外部故障
由于现代的数控系统可变性越来越高,故障率越来越低,很少发生故障。大部分故障都是非系统故障,是由外部原因引起的。
1.现代的数控设备都是机电一体化的产品,结构比较复杂,保护措施完善,自动化程度非常高。有些故障并不是硬件损坏引起的,而是由于操作、调整、处理不当引起的。这类故障在设备使用初期发生的频率较高,这时操作人员和维护人员对设备都不特别熟悉。
例一、一台数控铣床,在刚投入使用的时候,旋转工作台经常出现不旋转的问题,经过对机床工作原理和加工过程进行分析,发现这个问题与分度装置有关,只有分度装置在起始位置时,工作台才能旋转。
例二、另一台数控铣床发生打刀事故,按急停按钮后,换上新刀,但工作台不旋转,通过PLC梯图分析,发现其换刀过程不正确,计算机认为换刀过程没有结束,不能进行其它操作,按正确程序重新换刀后,机床恢复正常。
例三、有几台数控机床,在刚投入使用的时候,有时出现意外情况,操作人员按急停按钮后,将系统断电重新启动,这时机床不回参考点,必须经过一番调整,有时得手工将轴盘到非干涉区。后来吸取教训,按急停按钮后,将操作方式变为手动,松开急停按钮,把机床恢复到正常位置,这时再操作或断电,就不会出现问题。
2.由外部硬件损坏引起的故障
这类故障是数控机床常见故障,一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置等出现问题引起的。有些故障可产生报警,通过报答信息,可查找故障原因。
例一、一台数控磨床,数控系统采用西门子SINUMERIK SYSTEM 3,出现故障报警F31“SPINDLE COOLANT CIRCUIT”,指示主轴冷却系统有问题,而检查冷却系统并无问题,查阅PLC梯图,这个故障是由流量检测开关B9.6检测出来的,检查这个开关,发现开关已损坏,更换新的开关,故障消失。
例二、一台采用西门子SINUMERIK 810的数控淬火机床,一次出现6014“FAULT LEVEL HARDENING LIQUID”机床不能工作。报警信息指示,淬火液面不够,检查液面已远远超出最低水平,检测液位开关,发现是液位开关出现问题,更换新的开关,故障消除。
有些故障虽有报警信息,但并不能反映故障的根本原因。这时要根据报警信息、故障现象来分析。
例三、一台数控磨床,E轴在回参考点时,E轴旋转但没有找到参考点,而一直运动,直到压到极限开关,NC系统显示报警“EAXIS AT MAX.TRAVEL”。根据故障现象分析,可能是零点开关有问题,经确认为无触点零点开关损坏,更换新的开关,故障消除。
例四、一台专用的数控铣床,在零件批量加工过程中发生故障,每次都发生在零件已加工完毕,Z轴后移还没到位,这时出现故障,加工程序中断,主轴停转,并显示F97号报警“SPINDLESPEED NOT OK STATION 2”,指示主轴有问题,检查主轴系统并无问题,其它问题也可导致主轴停转,于是我们用机外编程器监视PLC梯图的运行状态,发现刀具液压卡紧压力检测开关 F21.1,在出现故障时,瞬间断开,它的断开表示铣刀卡紧力不够,为安全起见,PLC使主轴停转。经检查发现液压压力不稳,调整液压系统,使之稳定,故障被排除。
还有些故障不产生故障报警,只是动作不能完成,这时就要根据维修经验,机床的工作原理,PLC的运行状态来判断故障。
例五、一台数控机床一次出现故障,负载门关不上,自动加工不能进行,而且无故障显示。这个负载门是由气缸来完成开关的,关闭负载门是PLC输出Q2.0控制电磁阀Y2.0来实现的。用NC系统的PC功能检查PLC
Q2.0的状态,其状态为1,但电磁阀却没有得电。原来PLC输出Q2.0通过中间继电器控制电磁阀Y2.0,中间继电器损坏引起这个故障,更换新的`继电器,故障被排除。
例六、一台数控机床,工作台不旋转,NC系统没有显示故障报警。根据工作台的动作原理,工作台旋转第一步应将工作台气动浮起,利用机外编程器,跟踪 PLC梯图的动态变化,发现PLC这个信号并未发出,根据这个线索继续查看,最后发现反映二、三工位分度头起始位置检测开关I9.7、I10.6动作不同步,导致了工作台不旋转。进一步确认为三工位分度头产生机械错位,调整机械装置,使其与二工位同步,这样使故障消除。
发现问题是解决问题的第一步,而且是最重要的一步。特别是对数控机床的外部故障,有时诊断过程比较复杂,一旦发现问题所在,解决起来比较轻松。对外部故障的诊断,我们总结出两点经验,首先应熟练掌握机床的工作原理和动作顺序。其次要熟练运用厂方提供的PLC梯图,利用NC系统的状态显示功能或用机外编程器监测PLC的运行状态,根据梯图的链锁关系,确定故障点,只要做到以上两点,一般数控机床的外部故障,都会被及时排除。
拓展
数控机床专业就业方向
我国制造企业已普遍运用先进的数控技术,随之而来的是对数控人才的大量需求。 数控就业前景美妙在兴旺国度中,数控机床曾经大量普遍运用。我国制造业与国际先进工业国度相比存在着很大的差距,机床数控化率还不到2%关于目前我国现有的有限数量的数控机床(大局部为进口产品)也未能充沛应用。原因是多方面的,数控就业人才的匾乏无疑是主要缘由之一、由于数控技术是最典型的、应用最普遍的机电光一体化综合技术,我国迫切需求大量的从研讨开发到运用维修的各个层次的数控技术人才。
一、数控就业的人才需求主要集中在以下的企业和地域:
1、国有大中型企业,特别是目前经济效益较好的军工企业和国度严重配备制造企业。军工制造业是我国数控技术的主要应用对象. 有很大的数控就业空间。杭州发电设备厂用6000元月薪招不到数控技术工。
2、随着民营经济的飞速开展,我国沿海经济兴旺地域(如广东,浙江、江苏、山东),数控就业人才更是供不应求,主要集中在模具制造企业和汽车零部件制造企业。具有数控学问的模具技工的年薪已开到了30万元,超越了“博士”。
二、数控人才的学问构造—数控就业技艺需求:
另一个来源就是从企业现有员工中选择人员参与不同层次的数控技术中、短期培训,以顺应企业对数控人才的急需。这些人员普通具有企业所需的工艺背景、比拟丰厚的理论经历,但是他们大局部是传统的机类或电类专业的各级毕业生,学问面较窄,特别是对计算机应用技术和计算机数控系统不太理解。
就业方向
在工业企业,从事数控程序编制、数控设备的使用、维护与技术管理,数控设备销售与售后服务等工作。数控技术专业在主要面向机械、模具、电子、电气、轻工等行业,可从事产品设计与加工、数控编程、数控机床操作、数控常用CAM软件多轴加工、数控设备调试与维修等相关工作。数控技术应用专业的毕业生分配单位的性质分布如下:三资企业占58%,国有企业占26%,民营企业占9%,其他占5%。数控技术应用专业的毕业生所从事的工作性质分布如下:操作占55.7%,编程占13.4%,维修占9.4%,工艺占8.0%,生产管理占7.1%,质量检测占4.5%,综合占1.2%,营销占1.7%,行政管理占1.4%,其他占5.5%。
就业前景
数控技术专业是一种集机、电、液、光、计算机、自动控制技术为一体的知识密集型技术,它是制造业实现现代化、柔性化、集成化生产的基础,同时也是提高产品质量,提高生产率必不可少的物质手段。日本、美国、德国等工业发达国家采用数控技术所获取经济效益大致为:操作人员减少50%,成本降低60%,机床利用率达60%--80%,机床台数减少50%,生产面积减少40%。世界制造业由于数控技术的广泛应用,普通机械逐渐被高效率、高精度的数控设备所替代。数控技术在机械制造业的广泛应用,已成为国民经济发展的强大动力。加入世贸组织后,随着经济的快速发展,中国正逐步成为“世界制造中心”,数控化率已成为衡量一个国家或企业制造技术水平和经济实力的重要指标之一(数控化率:设备拥有量中数控设备所占的比例)。目前我国机床的数控化率仅为1.9%,而日本高达30%,美国超过了40%。在发达国家数控机床已经普遍大量使用,而我国数控技术应用推广同发达国家相比差距很大。我国数年内将增加40-50万台数控机床,相应需要60-80万数控专业技术人才。
;『陆』 车床车出的工件光洁度差,颤刀,乱刀纹。刀子不耐用。。。。。。急急急
1.你调整一下转速、单刀切削深度、进给量试一下。
2.看一下你现在用的是90度刀还是45度的,试换一下。
3.查找一下你的活顶尖是不是伸出过长,轴承是不是良好。里面有平面滚动轴承组合。实在怀疑,可以用死顶尖换用,注意中心孔的牛油润滑。
4.查找一下你尾架顶夹紧情况,夹紧条件下是不是左右里、上下里与机床主轴不同心。
5.把大中小拖板都紧一些,尤其是中拖板。
6.如果是机床的尾架部分你暂时无法去检查,(第3、4点,需要一些钳工基础),你可以试着从卡抓端向尾部走刀。反车,可以最大程度削除尾端的不给力。
7.如果第6步还有情况,要看一下主轴了,当然,如是三抓,也要查一下,是不是螺旋槽有损坏。四抓是人工自支调的,就不需检查了。
『柒』 车床切削工具磨损的原因有哪些
由于数控机床的主轴、进给系统等功能部件设计制造技术的突破,数控机床的主轴转速和进给速度均大幅度提高,高速切削刀具提出了一系列新的要求。研究表明高速切削时造成刀具损坏的主要原因是在切削力和切削温度作用下因机械摩擦、粘结、化学磨损、崩刃、破碎以及塑性变形等的引起的磨损和破损。下面简单介绍下切削刀具磨损的原因有哪些:
一、高速切削刀具的磨损形态
高速切削时刀具的主要磨损形态为后刀面磨损、微崩刃、边界磨损、片状剥落、前刀面月牙洼磨损、塑性变形等。
(1)后刀面磨损是高速切削刀具最经常发生的磨损形式,可看作是刀具的正常磨损。
(2)微崩刃是在刀具切削刃上产生的微小缺口,通过选用韧性好的刀具材料、减小进给量、改变刀具主偏角以增加稳定性等措施,均可减小微崩刃的发生概率。
(3)边界磨损发生在刀具后刀面的刀工接触边缘处,形状通常为狭长沟槽,因此也称为沟槽磨损。
(4)片状剥落多发生在刀具的前、后刀面上,其原因是刀—屑或刀—工接触区的接触疲劳或热应力疲劳所致。
(5)前刀面月牙洼磨损最常出现在塑性金属的高速切削中。塑性变形多发生在切削温度较高而刀具红硬性较差的切削条件下,超硬刀具材料在切削速度很高时也可能发生塑性变形现象。
二、切削刀具的磨损机理
前刀面与切屑间的摩擦副和后刀面与表面间的摩擦副,其中前者影响刀具前刀面的磨损,后者影响刀具后刀面的磨损,前、后刀面的磨损均影响刀具寿命。
(1)陶瓷刀具
陶瓷刀具具有硬度高、耐磨性能及高温力学性能优良、化学稳定性好、不易与金属发生粘结等特点。陶瓷刀具的磨损是机械磨损与化学磨损综合作用的结果,其磨损机制主要包括磨料磨损、粘结磨损、化学反应、扩散磨损、氧化磨损等。
(2)立方氮化硼刀具
立方氮化硼是氮化硼的致密相,具有一致的耐磨性和抗冲击性,并有很高的硬度和耐热性、优良的化学稳定性和导热性以及低摩擦系数。但由于切削过程中的高温、高压、切屑与前刀面间的摩擦以及工件材料中有关化学元素与之发生粘结、亲和发生化学磨损,导致前刀面出现月牙洼磨损。
(3)金刚石刀具
金刚石材料可分为天然金刚石和人造金刚石,天然金刚石具有自然界物质中最高的硬度和导热系数。近年来开发的多种采用化学机理研磨金刚石刀具的方法和保护气氛钎焊金刚石技术使天然金刚石刀具的制造变得相对容易,从而使天然金刚石刀具在超精密镜面切削领域得到广泛使用。
(4)金属陶瓷刀具
金属陶瓷的硬度、强度、韧性、抗塑性变形和抗崩刃性能等均有显著改善,尤其是高温强度、高温硬度、导热性、抗氧化性和抗热震性能得到提高,与钢的亲和力小,摩擦系数小,抗月牙洼磨损和抗粘结能力强,但抗塑性变形能力较差,在对高硬材料进行高速切削时常因刀刃的塑性变形而导致刀刃损坏。
(5)涂层刀具
涂层刀具具有很强的抗氧化性能和抗粘结性能,因而具有良好的耐磨性和抗月牙洼磨损能力。涂层的摩擦系数较低,能有效降低切削时的切削力及切削温度,因而可大大提高刀具耐用度。涂层刀具用于高速切削时,由于切削温度较高,可使涂层与基体的结合强度削弱,容易产生剥落、崩碎等损伤。
三、根据工件材质选用刀具
影响切削刀具磨损寿命的因素较多,如工件材料与刀具材料的匹配、切削方式、刀具几何形状、切削用量、切削油、振动等对刀具磨损寿命都有显著影响。
(1)铸铁的高速切削
在铸铁的高速切削中,正确选择刀具材料是提高效率的关键。适用于高速切削铸铁零件的刀具材料主要有超细晶粒硬质合金、金属陶瓷、陶瓷、立方氮化硼和涂层刀具等。
(2)淬硬钢的高速切削
硬质合金刀具的寿命最低,这是由于工件材料硬度很高,导致切削力和切削温度较高,造成硬质合金刀具迅速磨损、剥离乃至断裂破损。陶瓷刀具和立方氮化硼刀具的寿命随着切削速度的提高而增加,当达到最大临界值后则开始降低。
四、选用切削油减少刀具磨损
(1)硅钢是比较容易切削的材料,一般为了工件成品的易清洗性,在防止毛刺产生的前提下会选用低粘度的切削油。
(2)碳钢在选用切削油时应根据难易及脱脂条件来决定较佳粘度。
(3)镀锌钢因为和氯系添加剂会发生化学反应,所以在选用切削油时应注意可能发生白锈的问题,而使用硫型专用切削油可以避免生锈问题,但应尽早脱脂。
(4)不锈钢一般使用含有硫氯复合型添加剂的切削油,在保证极压性能的同时,避免工件出现毛刺、破裂等问题。
『捌』 我在使用车床车深孔加工遇到振刀.刀片也很不耐用,是哪里出了问题
很多原因,给你几个参考:1、尽量缩短刀杆长度,增加刀杆直径。2、改变内孔车刀的主后角和副后角。3、降低进给量和切削速度。4、刀尖略高于中心0.1左右。刀垫要少、刀头要在刀方虚拟位置中心等等.......................还有很多原因
『玖』 数控机床耐不耐用呢
耐用,毕竟数控机床是经过严格的工序生产出来的,每个环节都会有监管,以高标准的要求进行生产,不会出现任何问题▪⋅
『拾』 数控车床的切断刀怎么不耐用
具体不知道你用的什么刀具,如果是合金刀,不耐用主要是崩刃,解决方法可通过适当提高转速减小进给量,加强冷却润滑,还要注意一定要使切断刀严格对准中心。如果是高速钢切断刀,不耐用主要是刀具过早磨损,造成原因是转速选择不合适即转速太高,但如果转速选择太低又会造成工作效率不高,弥补办法是:进行分段设置转速,在切断刀刚进入工件表面时的转速选择较低速度,因为大多数工件表面硬度与内部硬度相比会高很多,尤其是外表不规则的更易伤刀,当进入表面几个毫米后,我再提高一些转速,再进入几个毫米后再提高。。。当然,为了随着转速的提高相应提高进给速度,必须使用G99,即每转进给,这样才能充分提高效率,我给你简单举例如下:
。。。
G99
G0 X32 Z0 S200
G1 X25 F0.06
X15 S400
X0 S650
。。。