⑴ 为什么伺服电机驱动器要集成安全功能
目前市面上很多伺服电机驱动器都有集成安全功能,似乎这已成为驱动器未来发展的一个趋势了。那么伺服电机驱动器集成安全功能对设备生产的何影响呢?为什么要使用带集成安全功能的驱动器呢?下面我们一起简单探讨下。
为了能更简单的将这个问题说清楚,我们今天会以安全功能中最基本的“安全停止”功能为例,如果能理解这个基本功能,那么一些增强型的安全功能在驱动器上的集成也就不难理解了。
我们知道,让设备停止运行的最安全有效的方法就是关断电源、切断电机输入电流,所以通常在设备检修、需要有人进入设备运行区域时,需要切断相应的电机和驱动器的电源,而我们通常的方法是按下急停E-Stop,急停的的触点会断开驱动器的电源主开关。
而这种切断电源的停车方式,又分为好几种不同的级别,比如断电后自由停车或主动停车后再断电等。我们今天的例子则是最简单最基本的断电自由停车,即急停直接切断电源后运动部件仍会靠惯性继续滑行一段时间,称为停止级别“CAT 0”。
通过上图几种安全线路,是可以基本做到这样的安全停车的,这通常需要在急停回路中使用安全继电器、安全接触器开关等器件。
从安全停车的功能上看,这样切断驱动器的电源,往往并不能快速关断驱动器的电流输出和电机的扭矩输出,因为驱动器的直流母线上会储存一定的能量,在驱动器主电源断开后,一部分直流母线残余的能量仍然可以让驱动器再运转一段时间(时间长短取决于系统容量),直到直流母线电压过低为止。所以,这样的切断驱动器电源的方式其实并不能确保安全停车的性能的一致性。
从安全功能的集成和实施角度看,正如上图所示,无论是在驱动器电源侧还是输出侧使用安全开关,整个系统都由于安全功能的增加变得更复杂,元器件的数量、接线数量,以及因此带来的工程设计实施量也因此而增加,想象一下随着设备自动化程度的提高,传动和运动轴数不断增加会对系统的安全性要求不断提高,这样安全系统的集成成本自然也会倍增。
再看设备生产运行,由于这样的安全功能是通过硬接线方式实现的,当在生产过程中发生安全停车的故障时,如果对系统不熟悉(尤其是那些大型系统),排查和区分安全故障点的难度是很大,这就无形中增加了设备的停机时间。另外,对于很多传动控制系统,如伺服传动,切断动力电源必须断开驱动器输入主电源,这样,每次安全停机后的设备恢复生产,不得不重复驱动器的上电初始化过程,这样便进一步延长了设备故障停机的时间,影响了设备生产效率和开机率。
所以,这样看来,使用传统的驱动器产品完成 CAT0 的安全停车,会提高系统实施成本和降低设备生产效率,影响设备生产的总体拥有成本,而且不能确保停车性能的一致性。
那么,如果使用集成安全功能的驱动器是怎样的呢?
对于集成了安全功能的驱动器,上述的安全停止功能通常称为“安全扭矩关断 STO ”。具备集成STO的驱动器,通常在其驱动器上会有一副双触点的常闭的安全信号端子,设备的外部安全信号可以通过这副安全信号触点控制关断驱动器的放大器动力回路输出。只有当这两副触点都处于导通的状态,驱动器才能正常工作;而当任意一副触点断开,驱动器的交流输出都会被关断,这样电机没有了电流输入,就处于无扭矩自由状态了。这和前面说的“CAT 0”的停车功能是一样的。
这样的安全关断扭矩的方式,是直接切断驱动器电流输出的,比切断驱动器电源的方式更为直接、快捷,可以做到在STO 触发的瞬间立即切断电机电源,使其失去扭矩输出。所以从安全功能的角度看,这样的安全停车的性能会更可靠。
由于这种停车是通过关闭驱动器动力回路输出的方式实现的,因此其安全控制回路中就不再需要接触器,安全信号(如安全继电器和急停开关)可以直接接入驱动器的STO端子。省去安全接触器和相关的接线,将使得安全系统得到极大的简化,元器件的数量、接线数量,以及相关的工程设计和实施都将被极大的节省。因此,从工程实施的角度看,系统集成和使用的成本不会因为安全性和自动化的性能的提升而倍增。
那么设备运行时呢?
在安全扭矩关断出发后,通常集成STO的驱动器都可以将其安全故障状态通过其集成的显示器显示出来(有的还可以将此故障信息通过网络推送到操作员HMI 终端显示),这样就极大的节省了安全故障的诊断实现,缩短了设备的停机时间。
另外,集成 STO 后,在安全停车的时候仅仅是切断了驱动器的动力输出回路,驱动器电源并没有被切断,这样,在安全停机后恢复运行时,驱动器不需要重新进行上电初始化,这样可以缩短设备安全恢复生产的时间,提升了生产效率和开机率。
通过上面的比较我们可以看到,使用集成STO安全扭矩关断的驱动器产品,可以通过更加简单、快捷有效的方法实现 CAT0 的安全停车功能,而且相较于传统的驱动器,在设备设计、集成、实施和运行维护上的总体成本会更低。
如果我们能够理解上述驱动器集成安全 STO 的价值,就不难理解今天的主题“为什么驱动器要集成安全功能”了。CAT 0 的安全停止只是设备安全中,最基本最简单的安全控制方式了。而当设备安全的功能和级别不断提高,其在设备设计、集成、实施和运维上都将更加复杂,比如更高的安全停车方式、安全运行区域、安全停车监控、安全运行速度和方向等等,如果在驱动器上集成这些高级别的安全功能,配合集成化的安全控制系统,将更加显著的帮助简化安全系统、减少元器件和提升设备运营效率。
⑵ 伺服电机不转原因
1、转子绕组有断路(一相断线)或电源一相失电;
2、绕组引出线始末端接错或绕组内部接反;
3、电源回路接点松动,接触电阻大;
4、电动机负载过大或转子卡住;
5、电源电压过低;
6、伺服电机装配太紧或轴承内油脂过硬;
7、轴承卡住。
解决方法:
1、查明断点予以修复;
2、检查绕组极性;判断绕组末端是否正确;
3、紧固松动的接线螺丝,用万用表判断各接头是否假接,予以修复;
4、减载或查出并消除机械故障;
5、检查是否把规定的面接法误接,或者是否由于电源导线过细使压降过大,如果是应予以纠正;
6、重新装配使之灵活,以及更换合格油脂;
7、修复轴承。

(2)伺服电机为什么不能防爆扩展阅读
伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲。
这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。
直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。
⑶ 防爆伺服电机有抱闸吗
未必,有没有抱闸和防不防爆没关系,一个是机械附件,一个是安全特性。
⑷ 伺服电机能否替代防爆电机
不能,伺服电机主要是从转速、定位等参数上性能比较好,而防爆电机指的是在外界有可燃气体容易发生爆炸的场合使用的电机,一般都有特殊的防护外壳。
⑸ 国产防爆伺服电机目前处于什么档次
防爆伺服电机的档次有以下几档:
第一档:parker、瑞诺、JARRETT
第二档:穆格、科尔摩根
第三档:国产不知名品牌也有防爆伺服电机了。
⑹ 防爆伺服电机和普通伺服电机有什么区别
防爆伺服电机一般应用在易燃易爆的场合,运行时不产生电火花。
⑺ 西门子有防爆伺服电机吗
前面的说的不完全对。西门子有防爆电机,但看你是要西门子贝得的YB2系列还是西门子1MA增安型、1MJ隔爆型的。
⑻ 哪些防爆伺服电机可以用ab控制器
可以的。
1、伺服驱动器和编码器是构成伺服系统的两个必要组成部分,伺服驱动器控内制部分通过读取编码器容获得:转子速度,转子位置和机械位置,可以完成:
A、伺服电机的速度控制
B、伺服电机的转矩控制
C、机械位置同步跟踪(多个传动点)
D、定点停车
2、编码器类型非常多,最常用的是绝对值编码器、增量编码器和旋转变压器,
还有一些更高的通讯编码器。对于伺服来讲,要想获得非常高的性能和精
度,必须提高编码器的分辨率,常用的伺服编码器2000-2500线(脉冲数/
转),但线数越高,编码器价格就越贵,所以必须了解控制系统的要求,以
选择最合适的编码器
3、对于增量性编码器,最为常用,但最大的问题是:掉电位置丢失,所以要保
持掉电位置,可以采用绝对值编码器;如果机械振动大,则选用光电编码器
就不合适了,这是需采用旋转变压器。
⑼ 伺服驱动器通电后,不能锁死电机,是怎么回事
驱动器要使能后才能锁死电机的。如果遇到不能锁死,驱动器也没有报警,可以断电重启一下试试,如果真的不行是要更换了
⑽ 伺服驱动器与伺服电机有区别吗
伺服电机又叫交流伺服电机,交流同步电机;普通电机通常指交流异步电机。
主要区别在于:
1,工作在闭环反馈和开环状态原理的区别;
这也是最大的区别,交流同步电机需要通过电机后端的传感器及编码器反馈速度、位置或力矩参考值给配套驱动器,再由驱动器实时调整驱动电流按用户指定值来控制电机旋转,而异步直流步进电机通常直接由变频器或调压器等装置直接驱动电机旋转,并不会对外部干扰因素如力矩过大,负载过重做到动态调整,所以前者比后者更高效,高级,节能,精准。
2,同步和异步结构的区别;
交流同步电机结构是定子线圈+磁性转子,它需要通过反馈编码器的同步信号知道转子变换的磁场,达到精准控制的目的,而异步电机结构是定子三相线圈星状或三角结构+转子铁心,单靠驱动电压控制设定频率值达到旋转目的的,高级矢量变频器因为只是对显示值简单调整,并无同步信号要求,故不算真正意义上的闭环反馈。所以前者比后者更复杂,绝不能轻易拆卸调整。
3,专用和通用的区别;
前者由于受编码器类型和厂家限制,通常配套的驱动器不仅按惯量大中小,功率区分,还按通讯协议做到了专机专用,就是说一款伺服电机只能对应一款驱动器,不能不同系列不同功率对应连接,而交流异步电机通常可以配套在不同功率的变频器上,只要不超过最大转速电流即可。所以,伺服也给维修界带来了挑战,通常交流同步电机维修技术含量高,维修成本大,不仅需要搭建多个不同种类和功率的伺服测试平台,还要积累大量经验。