Ⅰ 在中性水溶液中,Cu-Al和不锈钢-Al两对电偶的电位差相近,但前者会造成Al的严重腐蚀,而后者对Al的腐蚀轻微
不锈钢非纯物质,其导电性远低于铜
不锈钢表面氧化膜减弱了不锈钢表面的电极反应
Ⅱ 什么是电偶腐蚀及其产生腐蚀的条件
电偶腐蚀就是由于腐蚀电位不同,异种金属彼此接触或通过其他导体连通,处于同一介质中,造成异种金属接触部位的局部腐蚀,亦称接触腐蚀或双金属腐蚀。
产生条件:
1、电位差
阴阳两极必须具有一定的电位差。比如电位较正的“不锈钢管”和电位较负的“碳钢管”偶接,“不锈钢管”呈阴极,“碳钢管”呈阳极,电位差越大则电偶腐蚀倾向愈大。电位差是形成电偶腐蚀的驱动力。
2、电子通道
电偶腐蚀需要经导线连接或直接接触后形成电子通道。“碳钢管”中的铁失去的电子到达“不锈钢管”表面被腐蚀剂吸收。
3、电解质
电偶腐蚀需要在两种金属的接触区有电解质覆盖或浸没。“碳钢管”中的铁失去的电子形成离子,“不锈钢管”表面的电子被电解质中的腐蚀剂(如空气中的氧) 拿走。电解质即成为离子通道。
(2)不锈钢的腐蚀电位是多少扩展阅读:
影响电偶腐蚀的因素:
1、所形成的电偶间的电极电位差。电位差越大则电偶腐蚀倾向愈大。
2、腐蚀介质的电导。
3、金属表面的极化和由于阴、阳极反应生成表面膜或腐蚀产物产生的影响。
4、电偶间的空间布置(几何因素)。
电偶腐蚀速度,在数量上服从法拉第电解定律。两金属之间的电极电位差愈大、电流愈大,则腐蚀速度愈快。电路中的各种电阻则按欧姆定律影响电偶腐蚀电流,介质的电导率高,则加速电偶腐蚀。
Ⅲ 316L不锈钢和6061铝合金接触会产生电位腐蚀吗
316L不锈钢是以铁基为主的金属材料,6061铝合金的主要成分是铝,两者为不同金属组成,相互接触一定会发生腐蚀。由于双方有较好的防腐性能,这种异金属接触腐蚀会轻一些,抗腐蚀能了强一些。
Ⅳ 不锈钢为什么不能和碳素钢管放在一起
【不锈钢不能与碳钢放在一起的原因】因为会发生电偶腐蚀,具体如下:
1、电位差内:电容位较正的“不锈钢管”和电位较负的“碳钢管”偶接,“不锈钢管”呈阴极,“碳钢管”呈阳极,二者的电位差越大则电偶腐蚀倾向愈大。
2、电子通道:经导线连接或直接接触后形成电子通道。“碳钢管”中的铁失去的电子到达“不锈钢管”表面被腐蚀剂吸收。
3、电解质:两种金属的接触区有电解质覆盖或浸没。“碳钢管”中的铁失去的电子形成离子进去溶液,“不锈钢管”表面的电子被电解质中的腐蚀剂(如空气中的氧) 拿走。电解质成为离子通道。
只有改变三个条件中的一个,双金属腐蚀即被终止。电偶腐蚀与双金属接触面积有关,接触面积愈大。腐蚀愈小。电偶腐蚀的驱动力是电位差。
【电偶腐蚀】是指两种或两种以上,不同电极电位的金属处于腐蚀介质内,相互接触而引起的电化学腐蚀,又称接触腐蚀或双金属腐蚀。
Ⅳ 铬元素在不锈钢中如何起耐腐蚀作用
一楼的说了一些,但一些基本的概念没有说清楚,我来补充一下。
首先要明确一点,不锈钢并不是完全不锈的。我们通常意义上的不锈钢是指能抵抗大气及弱腐蚀介质腐蚀的钢种,腐蚀速度小于0.01mm/年的不锈钢称为“完全耐蚀”,腐蚀速度小于0.1mm/年的不锈钢称为“耐蚀”。因此不锈钢并不是不能被腐蚀,只不过被腐蚀的腐蚀速度较慢而已。
回到你所怀疑的三个问题:
1)铬不能完全覆盖基体。你的这个观点应该是正确的,但是正如我们上面所说的,我们只要使其腐蚀的速度足够慢就可以了。因此,不锈钢对铬的含量都是有要求的,即铬的含量必须要达到一定的量才可以,量变到质变。
2)这里涉及到腐蚀的分类的概念。腐蚀按照其化学原理可分为两类:化学腐蚀和电化学腐蚀。化学腐蚀是金属与介质发生化学反应而使金属发生破坏的过程,如钢的高温氧化、脱碳,在石油、燃气中的腐蚀等。典型的化学反应如:4Fe+3O2═2Fe2O3
这种反应腐蚀不产生腐蚀电流,在反应表面形成一层化学生成物。致密的氧化物膜(钝化膜)能阻止进一步的腐蚀。如SiO2、Al2O3、Cr2O3 这样的氧化物,结构致密、比容大于基体,能覆盖零件的表面,化学稳定性又高,从而有效地保护金属零件阻止进一步的腐蚀。这就是你所列的一点的原理。
电化学腐蚀是金属与介质发生电化学过程而使金属发生破坏的过程,如大气腐蚀、在各种电解液中的腐蚀等。在生产实际中遇到的腐蚀主要是电化学腐蚀。在金属材料中,它是由不同种金属元素或金属材料中不同相之间的电极电位的不同构成原电池而产生的。这种原电池腐蚀是在显微组织的不同相之间产生的,故称为微电池腐蚀。电化学腐蚀的特点是:有液体电介质存在,不同金属或不同相之间有电极电位差并连通或接触,同时有腐蚀电流产生。既然电化学腐蚀是金属腐蚀更重要更普遍的形式,那么研究电化学腐蚀的速度就显得极为重要。
腐蚀速度应取决于单位时间内从阳极上溶解的金属离子数,即等于单位时间内导线中流过的电量。按照欧姆定律,腐蚀电量应和阴极之间电位差即原电池的电动势成正比。对于金属材料的电化学腐蚀,由于微电池的阴、阳极直接接触形成短路状态,根据计算,腐蚀电流应该很大,即腐蚀速度也应该很快。而实际上并没有计算的那么快。这是因为在腐蚀之后,阴、阳极的电位会发生变化,即向着电位差缩小的方向变化,使原电池的电动势减小,这种电极电位的变化称为极化。其中阳极电位向正的方向的变化称为阳极极化。产生阳极极化的原因主要是由于在腐蚀过程中形成有保护作用的钝化膜阻碍了阳极金属和溶液的直接接触,使金属形成离子的速度减慢,因而降低了阳极表面的电荷密度,从而升高了阳极的电极电位。阴极电位向负的方向的变化称为阴极极化。其原因主要是消耗电子的阴极过程受阻,使阴极的电子造成堆积,升高了阴极表面的电荷密度,从而导致阴极电位变负。由于阳极变正,阴极变负,使得两极之间的电位差缩小,所以腐蚀速度变慢。当不锈钢中几乎所有的原电池被阻止了,这材料就成了单相状态。也就是一楼所说的电池只有一个极,形成不了回路。这就是你的第二和第三个疑问的回答。
3)我们高中的化学课本中应该讲过镀锌的作用,锌的电位就比铁的低,其实铬也比铁低。通过牺牲锌,铬这些较铁更活泼的金属来提高铁的电位,从而保护铁。
至于铬对铁的电位的具体影响,有一个叫Tammann的科学家首先进行了研究,他发现,当铁基固溶体中Cr 的含量达12.5%原子比(即1/8)时,电极电位有一个突跃升高;当Cr 的含量提高到25%原子比(即2/8)时,铁基固溶体的电极电位又有一个突跃的升高。这一现象称为二元合金固溶体电位的n/8 规律,也叫Tammann定律。
Ⅵ 紫铜和不锈钢一起放在水里会发什么反应吗会不会有电位腐蚀,几年后会不会哪一种慢慢被腐蚀掉了穿孔了呢
按说铁的活动性强于铜,相互接触的话会先于铜被腐蚀,但不锈钢的特殊防锈原理会在表层产生富铬氧化膜,从而防止进一步的腐蚀,因而最终先受到腐蚀的还是铜本身。
Ⅶ 铝、铅、铜、锌、不锈钢、钢等金属之间,有哪些金属可以直接接触,或不能直接接触产生电化学腐蚀
从化学电极电位上讲,从高到低应是铅、铜、不锈钢、钢、铝、锌的顺序,在电位差越大的两种金属接触时越易发生电化学腐蚀,但有时我们故意采用牺牲阴极保护阳极的方法来防腐蚀,如镀锌板。
Ⅷ 铝合金和不锈钢连接会发生腐蚀么
铝合金和不锈钢连接可能会发生电偶腐蚀。
理论上来说,只要是不同种类的金属发生接触,因为不同金属间存在的电极电位的差异,一旦存在电解液,形成回路,就会产生自催化式的电偶腐蚀,阳极金属被腐蚀。在铝合金和不锈钢的搭配中(假定是奥氏体不锈钢),铝合金是阳极金属。所以要避免采用多种金属,或者用绝缘的物质隔绝回路。
(8)不锈钢的腐蚀电位是多少扩展阅读:
影响电偶腐蚀速度的因素主要有:
1、所形成的电偶间的电极电位差;
2、腐蚀介质的电导;
3、金属表面的极化和由于阴、阳极反应生成表面膜或腐蚀产物的影响;
4、电偶间的空间布置(几何因素)。电偶腐蚀速度,在数量上服从法拉第电解定律。两金属之间的电极电位差愈大、电流愈大,则腐蚀愈快。电路中的各种电阻则按欧姆定律影响电偶腐蚀电流,介质的电导率高,则加速电偶腐蚀。
防止措施
电偶腐蚀的主要防止措施有:
1、选择在工作环境下电极电位尽量接近(最好不超过50毫伏)的金属作为相接触的电偶对;
2、减小较正电极电位金属的面积,尽量使电极电位较负的金属表面积增大;
3、尽量使相接触的金属电绝缘,并使介质电阻增大;
4、充分利用防护层,或设法外加保护电位。选择防护方法时应考虑面积律的影响,以及腐蚀产物的影响等。
参考资料来源:网络-电偶腐蚀
Ⅸ 求助,腐蚀电位大还是腐蚀电位小的合金比较耐腐蚀
铬是不锈钢都含有的元素,铬是铁素体形成元素.铬的主要作用是耐腐蚀,从图1中可以看出在钢中添加铬对腐蚀性的影响.当铬含量达到12%时,在大气环境下或在氧化性介质中铬可以自发形成一种稳定的、透明的、极薄的钝化膜来阻止腐蚀,基本上不会生锈,较高的合金含量可通过强化薄膜和快速自我修复薄膜来提高抗腐蚀性.不锈钢铬含量上限为30%.1铬含量对钢的大气腐蚀的影响(在距海边250m的海洋环境中放置52个月)镍是稳定奥氏体的元素,镍可将奥氏体降低范围扩大到低温区.从图2可以看出镍的作用,在图中斜线以上所示温度下奥氏体是稳定的,在这条线以下,铁素体和马氏体都具有稳定的晶体结构.镍可提高韧性和延展性,使之更易于加工、制造和焊接,增强抗酸的腐蚀能力,保持钝化膜的能力及在腐蚀介质中的抗蚀能力.2加入镍对铁铬合金的影响钼可提高钝化膜的强度,增强耐局部腐蚀性,如点蚀、缝隙腐蚀,特别是在卤盐或海水中有氯离子的情况下.钼也可提高对氯化物应力腐蚀断裂的抵抗能力.利用固溶强化的方法,钼可提高奥氏体牌号的高温强度和马氏体牌号的抗回火能力.锰类似于镍,当添加锰或用锰替代镍时,都会提高不锈钢的强度.氮是稳定奥氏体的元素,可提高强度,在奥氏体及双相不锈钢中可增强耐点蚀及缝隙腐蚀能力并减少金属间相(σ)在高温或焊接时析出的机会.钛、铌能优先与碳和氮结合形成碳化物和氮化物,改善高温强度性能并阻止铬的碳化物的形成,防止晶间腐蚀.铌可提高高温蠕变断裂强度.硅、铝可改善抗氧化性能,硅还可阻改善铸造特性.铜可提高对稀酸特别是对硫酸的抗酸能力,加入3%~4%铜具的低的加工硬化率,易于成形.析出铜离子化有灭菌作用.硫、硒和铅可改善机械切削性能,但会降低耐腐蚀能力.铈、镱、镧可提高抗氧化性.空气中或化学腐蚀介质中能够抵抗腐蚀的一种铁基高合金钢,不锈钢是具有美观的表面和耐腐蚀性能好,不必经过镀色等表面处理,而发挥不锈钢所固有的表面性能,使用于多方面的钢铁的一种,通常称为不锈钢.从金相学角度分析,因为不锈钢含有铬而使表面形成很薄的铬膜,这个膜隔离开与钢内侵入的氧气起耐腐蚀的作用.为了保持不锈钢所固有的耐腐蚀性,钢必须含有12%以上的铬.不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成.这种不锈性和耐蚀性是相对的.试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀.实际上工业上应用的不锈钢都是同时存在几种以至十几种元素的,当几种元素共存于不锈钢这一个统一体中时,它们的影响要比单独存在时复杂得多,因为在这种情况下不仅要考虑各元素自身的作用,而且要注意它们互相之间的影响,因此不锈钢的组织决定于各种元素影响的总和.1、铬在不锈钢中的决定作用:决定不锈钢性属的元素只有一种,这就是铬,每种不锈钢都含有一定数量的铬.铬之所以成为决定不锈钢性能的主要元素,根本的原因是向钢中添加铬作为合金元素以后,促使其内部的矛盾运动向有利于抵抗腐蚀破坏的方面发展.这种变化可以从以下方面得到说明:①铬使铁基固溶体的电极电位提高②铬吸收铁的电子使铁钝化钝化是由于阳极反应被阻止而引起金属与合金耐腐蚀性能被提高的现象.构成金属与合金钝化的理论很多,主要有薄膜论、吸附论及电子排列论.2、镍在不锈钢中的作用是在与铬配合后才发挥出来的镍是优良的耐腐蚀材料,也是合金钢的重要合金化元素.镍在钢中是形成奥氏体的元素,但低碳镍钢要获得纯奥氏体组织,含镍量要达到24%;而只有含镍27%时才使钢在某些介质中的耐腐蚀性能显著改变.所以镍不能单独构成不锈钢.但是镍与铬同时存在于不锈钢中时,含镍的不锈钢却具有许多可贵的性能.基于上面的情况可知,镍作为合金元素在不锈钢中的作用,在于它使高铬钢的组织发生变化,从而使不锈钢的耐腐蚀性能及工艺性能获得某些改善.3、碳在不锈钢中的两重性:碳是工业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著.碳在不锈钢中对组织的影响主要表现在两方面,一方面碳是稳定奥氏体的元素,并且作用的程度很大(约为镍的30倍),另一方面由于碳和铬的亲和力很大,与铬形成-系列复杂的碳化物.所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的作用是互相矛盾的.认识了这一影响的规律,我们就可以从不同的使用要求出发,选择不同含碳量的不锈钢.在不锈钢高温应用环境下,较高C含量容易引起不锈钢的敏化,造成不锈钢的高温强度下降,在高温环境下,必须保证不锈钢中的碳含量较低或者添加Ti、Nb等元素来防止晶间腐蚀.4、氮在不锈钢中的作用:氮在钢中的作用也是稳定奥氏体,并且作用的程度比镍还要大.例如,欲使含18%铬的钢在常温下获得奥氏体组织,以锰和氮代镍的低镍不锈钢与元镍的铬锰氮不诱钢,目前已在工业中获得应用,有的已成功地代替了经典的18-8铬镍不锈钢.与碳相同,氮与铬形成-系列复杂的碳化物,容易造成不锈钢的晶间腐蚀.5、锰和可以代替铬镍不锈钢中镍铬镍奥氏体钢的优点虽然很多,但近几十年来由于镍基耐热合金与含镍20%以下的热强钢的大量发展与应用,以及化学工业日益发展对不锈钢的需要量越来越大,而镍的矿藏量较少且又集中分布在少数地区,因此在世界范围内出现了镍在供和需方面的矛盾.所以在不锈钢与许多其他合金领域(如大型铸锻件用钢、工具钢、热强钢等)中,特别是镍的资源比较缺乏的国家,广泛地开展了节镍和以其他元素代镍的科学研究与生产实践,在这方面研究和应用比较多的是以锰和氮来代替不锈钢与耐热钢中的镍.锰对于奥氏体的作用与镍相似,锰在钢中稳定奥氏体的作用约为镍的二分之一.6、不锈钢中加钛或铌是为了防止晶间腐蚀.7、钼和铜可以提高某些不锈钢的耐腐蚀性能.8、其他元素对不锈钢的性能和组织的影响以上主要的九种元素对不锈钢的性能和组织的影响,除这些元素对不锈钢性能与组织影响较大的元素以外,不锈钢中还含有一些其他的元素.有的是和一般钢一样为常存杂质元素,如硅、硫、磷等.也有的是为了某些特定的目的而加入的,如钴、硼、硒、稀土元素等.从不锈钢的耐腐蚀性能这一主要性质来说,这些元素相对于已讨论的九种元素,都是非主要方面的,虽然如此,但也不能完全忽略,因为它们对不锈钢的性能与组织同样也发生影响.硅是形成铁素体的元素,在一般不锈钢中为常存杂质元素.钴作为合金元素在钢中应用不多,这是因为钴的价格高及其在其它方面(如高速钢、硬质合金、钴基耐热合金、磁钢或硬磁合金等)有着更重要的用途.在一般不锈钢中加钴作合金元素的也不多,常用不锈钢如9Crl7MoVCo钢(含1.2-1.8%钴)加钴,目的并不在于提高耐腐蚀性能而在于提高硬度,因为这种不锈钢的主要用途是制造切片机械刃具、剪刀及手术刀片等.硼:高铬铁素体不锈钢Crl7Mo2Ti钢中加0.005%硼,可使在沸腾的65%醋酸中的耐腐蚀性能提高.加微量的硼(0.0006~0.0007%)可使奥氏体不锈钢的热态塑性改善.少量的硼由于形成低熔点共晶体,使奥氏体钢焊接时产生热裂纹的倾向增大,但含有较多的硼(0.5~0.6%)时,反而可防止热裂纹的产生.因为当含有0.5~0.6%的硼时,形成奥氏体-硼化物两相组织,使焊缝的熔点降低.熔池的凝固温度低于半溶化区时,母材在冷却时产生的张应力,由处于液态.固态的焊缝金属承受,此时是不致引起裂缝的,即使在近缝区形成了裂纹,也可以为处于液态-固态的熔池金属所填充.含硼的铬镍奥氏体不锈钢在原子能工业中有着特殊的用途.磷:在一般不锈钢中都是杂质元素,但其在奥氏体不锈钢中的危害性不像在一般钢中那样显著,故含量可允许高一些,如有的资料提出可达0.06%,以利于冶炼控制.硫和硒:在一般不锈钢中也是常有杂质元素.但向不锈钢中加0.2~0.4%的硫,可提高不锈钢的切削性能,硒也具有同样的作用.硫和硒提高不锈钢的切削性能,是因为它们降低不锈钢的韧性.硫与硒均降低不锈钢的耐腐蚀性能,所以实际应用它们作为不锈钢的合金化元素的很少.稀土元素:稀土元素应用于不锈钢,目前主要在于改善工艺性能方面.如向Crl7Ti钢和Cr17Mo2Ti钢中加少量的稀土元素,可以消除钢锭中因氢气引起的气泡和减少钢坯中的裂纹.奥氏体和奥氏体-铁素体不锈钢中加0.02~0.5%的稀土元素(铈镧合金),可显著改善锻造性能.曾有一种含19.5%铬、23%镍以及钼铜锰的奥氏体钢,由于热加工工艺性能在过去只能生产铸件,加稀土元素后则可轧制成各种型材.铬-镍奥氏体不锈钢在450~800℃温度区加热,常发生沿晶界的腐蚀破坏,称为晶间腐蚀.一般认为,晶间腐蚀是碳从饱和的奥氏体以Cr23C6形态析出.造成晶界处奥氏体贫铬所致.防止晶界贫铬是防止晶间腐蚀的有效方法.如将各种元素按与碳的亲和力大小排列,顺序为:Ti、Zr、V、Nb、W、Mo、Cr、Mn.钛..本周(10月3日10月9日)伦敦LME综合镍收盘13150美元/吨,较上周下跌2075美元,库存减少786吨.本周伦镍行情单边下跌,势如破竹,盘中最低下探至12650美元,最高上摸15525美元.本周是十一国庆长假后的第一周,虽然上周五美国众议院在经过一波三折的表决后最终通过7000亿美元的援助金融..不锈钢在国外已经被大量应用于建筑内外管道,一般使用两个不锈钢钢种:304和316.不锈钢相对其它材质管道,有以下优点:-耐腐蚀性佳-坚固且延展性好-易于成型和焊接-不受水流速的限制,最大流速可达30米/秒-适用于各种饮用水化学成份-维修量小,所以寿命周期成本低..409L是400系不锈钢中的典型代表,该钢种低碳含钛,并含有11%左右的Cr,一般用作耐热钢.该钢种有优秀的加工性和焊接性,拥有适当的高温特性和常温耐腐蚀性,主要用途是耐热设备的原料.409L的特性使它广泛应用于汽车排气管部件、热交换器、耐热设备,同时也可以应用于低级西餐具,电子部件.经硬态处理过..1、产品特性LZ30J5是利用Mn及Cu来取代Ni的节镍型奥氏体不锈钢,且具有同304钢种相近的机械性能和耐腐蚀性.此钢种将作为普通304的替代钢种,且相比传统的304有着相近的性能和价格优势.2、产品用途LZ30J5可适用下列产品用途:A.食品加工类:餐具,厨房用具.B.装饰类..
Ⅹ 316L不锈钢和6061铝合金接触会产生电位腐蚀吗
首先要明白一点通常所说的不锈钢是不锈钢和耐酸钢的总称。所谓不锈钢是指抵抗大气及弱回腐蚀介质腐蚀的答钢;而耐酸钢是指在各种强腐蚀介质中耐腐蚀的钢。实际上并没有绝对的不锈钢、不受腐蚀的钢材,只是在不同的介质中腐蚀速度不同而已。再者,腐蚀分两种,一种化学腐蚀,不做说明。二是电化学腐蚀,是指金属在酸、碱、盐等电解质溶液中由于原电池的作用而引起的腐蚀。马氏体不锈钢含WCr=13%-18%,Wc=0.1%-1.0%。由于含大量的Cr,故使电极电位明显升高,从而耐腐蚀性明显提高。但这类钢含有较高的碳,含碳量增加,钢的硬度、强度、耐磨性和切削性都显著提高,耐腐蚀性下降。因此,马氏体不锈钢多用于制造力学性能要求较高、耐蚀性要求较低的产品。