㈠ 請高人指點:matlab遺傳演算法工具箱編程,求一個多約束,多元非線性方程的最小值
將下屬兩個目標函數分別保存在兩個m文件中
function f1=func1(x) %第一目標函數
f1=x(:,1).*x(:,1)./4+x(:,2).*x(:,2)./4;
function f2=func2(x) %第二目標函數
f2=x(:,1).*(1-x(:,2))+10;
function GA()
clear;clc;close all
NIND=100; %個體數目
MAXGEN=50; %最大遺傳代數
NVAR=2; %變數個數
PRECI=20; %變數的二進制位數
GGAP=0.9; %代溝
trace1=[];trace2=[];trace3=[]; %性能跟蹤
%建立區域描述器
% rep([PRECI],[1,NVAR])
FieldD=[rep([PRECI],[1,NVAR]);rep([1;2],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Chrom=crtbp(NIND,NVAR*PRECI); %初始種群
v=bs2rv(Chrom,FieldD) ; %初始種群十進制轉換
gen=1;
while gen<MAXGEN,
[NIND,N]=size(Chrom);
M=fix(NIND/2);
ObjV1=func1(v(1:M,:)); %分組後第一目標函數值
FitnV1=ranking(ObjV1); %分配適應度值
SelCh1=select('sus',Chrom(1:M,:),FitnV1,GGAP); %選擇
ObjV2=func2(v(M+1:NIND,:)); %分組後第二目標函數值
FitnV2=ranking(ObjV2); %分配適應度值
SelCh2=select('sus',Chrom(M+1:NIND,:),FitnV2,GGAP); %選擇
SelCh=[SelCh1;SelCh2]; %合並
SelCh=recombin('xovsp',SelCh,0.7); %重組
Chrom=mut(SelCh); %變異
v=bs2rv(Chrom,FieldD);
trace1(gen,1)=min(func1(v));
trace1(gen,2)=sum(func1(v))/length(func1(v));
trace2(gen,1)=min(func2(v));
trace2(gen,2)=sum(func2(v))/length(func2(v));
trace3(gen,1)=min(func1(v)+func2(v));
trace3(gen,2)=sum(func1(v))/length(func1(v))+sum(func2(v))/length(func2(v));
gen=gen+1;
end
figure(1);clf;
plot(trace1(:,1));hold on;plot(trace1(:,2),'-.');
plot(trace1(:,1),'.');plot(trace1(:,2),'.');grid on;
legend('解的變化','種群均值的變化')
xlabel('迭代次數');ylabel('目標函數值');
figure(2);clf;
plot(trace2(:,1));hold on;
plot(trace2(:,2),'-.');
plot(trace2(:,1),'.');
plot(trace2(:,2),'.');grid;
legend('解的變化','種群均值的變化');
xlabel('迭代次數');ylabel('目標函數值');
figure(3);clf;
plot(trace3(:,1));hold on;
plot(trace3(:,2),'-.');
plot(trace3(:,1),'.');
plot(trace3(:,2),'.');grid;
legend('解的變化','種群均值的變化');
xlabel('迭代次數');ylabel('目標函數值');
figure(4);clf;plot(func1(v));hold on;
plot(func2(v),'r-.');grid;
㈡ MATLAB遺傳演算法工具箱求解非線性多目標優化問題
將下屬兩個目標函數分別保存在兩個m文件中
function f1=func1(x) %第一目標函數
f1=x(:,1).*x(:,1)./4+x(:,2).*x(:,2)./4;
function f2=func2(x) %第二目標函數
f2=x(:,1).*(1-x(:,2))+10;
function GA()
clear;clc;close all
NIND=100; %個體數目
MAXGEN=50; %最大遺傳代數
NVAR=2; %變數個數
PRECI=20; %變數的二進制位數
GGAP=0.9; %代溝
trace1=[];trace2=[];trace3=[]; %性能跟蹤
%建立區域描述器
% rep([PRECI],[1,NVAR])
FieldD=[rep([PRECI],[1,NVAR]);rep([1;2],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Chrom=crtbp(NIND,NVAR*PRECI); %初始種群
v=bs2rv(Chrom,FieldD) ; %初始種群十進制轉換
gen=1;
while gen<MAXGEN,
[NIND,N]=size(Chrom);
M=fix(NIND/2);
ObjV1=func1(v(1:M,:)); %分組後第一目標函數值
FitnV1=ranking(ObjV1); %分配適應度值
SelCh1=select('sus',Chrom(1:M,:),FitnV1,GGAP); %選擇
ObjV2=func2(v(M+1:NIND,:)); %分組後第二目標函數值
FitnV2=ranking(ObjV2); %分配適應度值
SelCh2=select('sus',Chrom(M+1:NIND,:),FitnV2,GGAP); %選擇
SelCh=[SelCh1;SelCh2]; %合並
SelCh=recombin('xovsp',SelCh,0.7); %重組
Chrom=mut(SelCh); %變異
v=bs2rv(Chrom,FieldD);
trace1(gen,1)=min(func1(v));
trace1(gen,2)=sum(func1(v))/length(func1(v));
trace2(gen,1)=min(func2(v));
trace2(gen,2)=sum(func2(v))/length(func2(v));
trace3(gen,1)=min(func1(v)+func2(v));
trace3(gen,2)=sum(func1(v))/length(func1(v))+sum(func2(v))/length(func2(v));
gen=gen+1;
end
figure(1);clf;
plot(trace1(:,1));hold on;plot(trace1(:,2),'-.');
plot(trace1(:,1),'.');plot(trace1(:,2),'.');grid on;
legend('解的變化','種群均值的變化')
xlabel('迭代次數');ylabel('目標函數值');
figure(2);clf;
plot(trace2(:,1));hold on;
plot(trace2(:,2),'-.');
plot(trace2(:,1),'.');
plot(trace2(:,2),'.');grid;
legend('解的變化','種群均值的變化');
xlabel('迭代次數');ylabel('目標函數值');
figure(3);clf;
plot(trace3(:,1));hold on;
plot(trace3(:,2),'-.');
plot(trace3(:,1),'.');
plot(trace3(:,2),'.');grid;
legend('解的變化','種群均值的變化');
xlabel('迭代次數');ylabel('目標函數值');
figure(4);clf;plot(func1(v));hold on;
plot(func2(v),'r-.');grid;
㈢ 如何用遺傳演算法工具箱中的函數畫出適應度函數曲線
matlab有遺傳演算法工具箱。
核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數
【輸出參數】
pop--生成的初始種群
【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數
【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡
【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如['maxGenTerm']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如['normGeomSelect']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如['arithXover heuristicXover simpleXover']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]
注意】matlab工具箱函數必須放在工作目錄下
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。
㈣ 有關怎麼應用matlab遺傳演算法工具箱GUI
GA就是鈣的意識,如果是CA 則是癌症的意識。
㈤ matlab工具箱
最好下個金山快譯 譯一下就好了
我們在學校機房做實驗的時候都是看英文的
大不了用文曲星咯
㈥ 遺傳演算法工具箱的具體使用
matlab遺傳演算法工具箱函數及實例講解 核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數
【輸出參數】
pop--生成的初始種群
【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數
【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡
【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如['maxGenTerm']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如['normGeomSelect']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如['arithXover heuristicXover simpleXover']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
㈦ 遺傳演算法工具箱中設置了elite count不為零的,但是演算法運行過程中為什麼還會出現目標值下降
樓主。抄。你盡管放心。。
你做出襲來的結果應該是2條曲線,一條是種群均值的藍線,一條是最優值的紅線,然後2條線都是呈現下降趨勢是吧?
首先,你要明白一點,種群均值是逐漸向最優值靠攏的,這點總能理解吧?不是說你看到下降的函數就表明結果錯誤了,GAOP工具箱就是這樣結果。在開始的幾代已經找到了最優值,那越往後就是逐漸收斂啊,交叉來交叉去已經沒有新的優良種群了,所以最後逐漸收斂。
你說對不?求分數
㈧ 遺傳演算法工具箱中怎麼畫出遺傳代數與優化變數的關系圖
我沒用來過MatLab的遺傳演算法工源具箱,我是自己用C語言實現的遺傳演算法。想要直觀地觀察遺傳代數與優化變數的關系,有兩種常用辦法:一種是直接把N個優化變數+遺傳代數做一個(N+1)維的坐標系,把每代的各優化變數取值添加進坐標系中,生成MatLab或其它看圖工具能識別的數據文件進行觀看;二種辦法是每代求出各優化變數取值的均方差,以均方差和遺傳代數建立一個二維坐標系,如前所述生成數據文件進行觀看。我一般採用的是第二種方法,並且,在遺傳演算法內部,我也是用這種辦法來判斷種群進化情況的,很有效。