1. 運用MATLAB遺傳演算法工具箱求解非線性多目標優化問題,煩請高人指點!
matlab中沒有rep這個函數,需要你自己定義這個函數。
2. matlab遺傳演算法工具箱函數的參數問題
可能的原因是:
1.gatbx工具箱下的crtbp函數的文件名為crtbp.m,大小寫不統一所以出現了warning,需要把把專它改為屬小寫的crtbp.m;
2.gatbx屬於第三方工具箱,matlab自身對它是沒有說明的,所以搜不到這些遺傳演算法的指令。
3. matlab語句出錯信息。遺傳演算法REP未定義函數
你用的應該是謝菲爾德開發的工具箱,所以得下載一個他們的工具箱安裝到matlab裡面才能用REP,而且是大寫的
4. 如何調用matlab遺傳演算法工具箱中的bs2rv、crtbase、crtbp等函數
網上下載遺傳工具箱(網上主要有三類,基本差不多都有你說的這幾個函數)。然後加入路徑就可以使用了。
5. Matlab遺傳演算法工具箱里的crtrp函數為何總是出錯
??在看雷英傑《MATLAB遺傳演算法工具箱及應用》函數用法的時候發現書上的例子不能運行
FielDR=[-10,-5,-3,-1;10,5,3,1]
Chrom=crtrp(6,FielDR)
Error: File: crtrp.M Line: 34 Column: 19
nargin previously appeared to be used as a function or command, conflicting with its use here as the name of a variable.
A possible cause of this error is that you forgot to initialize the
variable, or you have initialized it implicitly using load or eval.
而且工具箱中自帶的例子mpga.m運行也會出錯,錯誤就在crtrp這個函數,不解,求高手幫忙1 樓是crtrp這個m文件的問題,把34行注釋掉再保存運行看看3 樓上面說的很對,你把出問題的那部分注釋掉再保存運行就OK了。4 樓你太有才了哥們留個郵箱吧有什麼問題問你哈我用這個做課題。5 樓真是太謝謝了,有學到一招6 樓:handshake謝謝我這兩天一直在運行就是一直出錯原來是這個問題7 樓我正遇到這個問題,是怎麼回事呀?我試下把34行把34行注釋掉再保存運行看看8 樓謝謝了,剛好碰到了這個問題,我發現這個論壇太好了
聲明:本頁面所有內容來源於網路,本站僅作收集整理,版權屬於原網站所有,請通過
獲取更詳細信息
6. MATLAB中遺傳演算法如何處理REP等函數的未識別
具體的不清楚,當年我做遺傳演算法時沒用MATLAB的任何函數,完全是自己寫的程序。
7. matlab遺傳演算法工具箱函數怎樣將下圖調用出來,要詳細過程,有獎勵哦!謝謝啦!很著急
這個是自己弄得GUI吧
8. 使用matlab遺傳演算法工具箱如何加入目標函數中變數的約束條件啊,可否在M文件中加
首先回答你第一個問題:怎麼加入變數的約束條件?
打開遺傳演算法工具箱的窗體中會有下圖所示的選項,即是約束條件的編輯
至於添加的方式,這里要重點的提一下,首先將問題抽象成規劃問題的標准形式(如果你不懂什麼是標准形式的話,建議你去翻閱運籌學那本書,上告訴你什麼是標准形式),然後用矩陣語言寫出來,最後將矩陣的系數填寫到線性不等約束和線性相等約束中,同時定義所求變數x的上界和下界(記住有多少個變數就有多少列,如果你發現有些條件中沒有出現某些變數,那麼就應該用0補足,這個是matlab解決規劃問題與lingo想比較麻煩的一個地方,)。
然後回答你第二個問題:可否在M文件中添加約束條件?
當然可以,界面的東西是為了方便不熟悉matlab編程的人而設計出來的,但是其底層的演算法和介面肯定是有的。
碰到不懂的函數,請記得:help函數名
helpga之後會得到一下一些函數
ga
//這個是定義
Syntax //這個是語法也即是調用的規則
x=ga(fitnessfcn,nvars)
x=ga(fitnessfcn,nvars,A,b)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
x=ga(problem)
[x,fval]=ga(...)
[x,fval,exitflag]=ga(...)直接給你將最長的那個吧
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
X是返回所求的解
fitnessfcn是適應度函數
nvars是適應度函數中所含變數的維數
A是不等式約束中變數的系數矩陣,b是不等式約束中不含變數的值矩陣
Aeq是等式約束中變數的系數矩陣,beq是等式約束中不含變數的值矩陣
LB是下界,UB是上界
nonlcon是非線性約束條件
至於options嘛 我也木有用過,其實你也可以不用管的。
懂了木有呢,親?
9. 遺傳演算法工具箱的具體使用
matlab遺傳演算法工具箱函數及實例講解 核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數
【輸出參數】
pop--生成的初始種群
【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數
【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡
【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如['maxGenTerm']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如['normGeomSelect']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如['arithXover heuristicXover simpleXover']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])